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Abstract. We study the Piatetski-Shapiro construction, which takes a totally real field
F and a Shimura datum (G,X) and produces a new Shimura datum (H,Y). If F is Galois,
then the Galois group Γ of F acts on (H,Y), and we show that the Γ-fixed points of the
Shimura varieties for (H,Y) recover the Shimura varieties for (G,X) under some hypotheses.
For Shimura varieties of Hodge type with parahoric level, we show that the same is true
for the p-adic integral models constructed by Pappas–Rapoport, if p is unramified in F.
We also study the Γ-fixed points of the Igusa stacks of [3] for (H,Y) and prove optimal
results.
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1. Introduction

Let (G,X) be a Shimura datum of Hodge type and let F be a Galois totally real field
with Galois group Γ = Gal(F/Q). Define H := ResF/Q GF and let Y be the Shimura datum
for H induced by X; we call (H,Y) the Piatetski-Shapiro construction for (G,X) associated
to F. This is not of Hodge type if [F : Q] > 1, but there is a modified Shimura datum
(H1,Y1) ↪−→ (H,Y) that is of Hodge type, see Section 3.6. Then Γ acts on (H1,Y1) and
there is a morphism (G,X) → (H1,Y1) that is Γ-equivariant. Thus if K ⊂ H1(Af ) is a Γ-
stable compact open subgroup, then there is a morphism of Shimura varieties ShKΓ(G,X)→
ShK(H1,Y1), which induces a map (where the superscript Γ denotes taking Γ-fixed points)

ShKΓ(G,X)→ ShK(H1,Y1)
Γ.

This morphism can be arranged to be an isomorphism under minor hypotheses, see Theorem
3.6.4. In this paper we will investigate to whether this result extends to p-adic integral
models, and prove affirmative results if p is unramified in F. Our main results will be used
in joint work in progress of the authors [10] to construct new exotic Hecke correspondences
between the special fibers of different Shimura varieties.

1.1. Main results. Let (G,X) be a Shimura datum of Hodge type with reflex field E. Fix
a prime p > 2 and a prime v of E above p, let E be the completion of E at v and let OE be
its ring of integers. Let G = G⊗Qp and let G be a parahoric model of G over Zp.

Let F and Γ be as above, let F = F⊗Qp and let OF be OF⊗Zp. Set H = ResOF /Zp
GOF

,
let Kp = H(Zp) and K1,p = Kp ∩H1(Qp). For a Γ-stable and neat compact open subgroup
Kp ⊂ H(Apf ) we write Kp

1 = Kp
1 ∩H1(Apf ) and K1 = Kp

1K1,p. We will write SK1(H,Y) for
the integral model over OE of ShK(H1,Y1) constructed by [4, Theorem I], cf. [25, Theorem
4.5.2]; this has a natural Γ-action by [4, Corollary 4.1.10].

Theorem 1 (Theorem 5.1.2). Assume that F is tamely ramified over Q, that X1(Q,G)→
X1(F, G) is injective, that p > 2 and that p is unramified in F. (1): There is a cofinal
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collection of Γ-stable compact open subgroups Kp ⊂ H(Apf ) such that the natural map

SKΓ(G,X)→ SK1(H1,Y1)
Γ(1.1.1)

is a universal homeomorphism. (2): If p is coprime to |Γ| · |π1(Gder)|, and if G splits over
a tamely ramified extension, then there is a cofinal collection of Kp as above such that the
natural map (1.1.1) is an isomorphism. 3) If Kp is hyperspecial, then there is a cofinal
collection of Kp as above such that the natural map (1.1.1) is an isomorphism.

The assumption that X1(Q,G) →X1(F, G) is injective is necessary, see Section 3.1 for
the case of tori. It should be possible to remove it if one works with the extended Shimura
varieties of Xiao–Zhu, or the rational Shimura varieties of Sempliner–Taylor, see [32]. The
assumption that p is unramified is also necessary. The assumption that G splits over a
tamely ramified extension in part (2) can be weakened, see Hypothesis 4.3.2.

Example 1.1.1. If (G,X) = (GL2,H), then (H1,Y1) is the subgroup of ResF/QGL2 con-
sisting of those matrices with determinant in Gm ⊂ ResF/QGm. The p-adic integral models
for the Shimura varieties for (H1,Y1) have a moduli interpretation in terms of (weakly po-
larized) abelian varieties A of dimension [F : Q] up to prime-to-p isogeny, equipped with
an action i : OF,(p) → End(A). The action of an element γ ∈ Γ is then by precompos-
ing i with γ : OF,(p) → OF,(p). The morphism from the modular curve can be thought
of as taking an elliptic curve up to prime-to-p isogeny E, and forming the abelian variety
up to isogeny E ⊗Z(p)

OF,(p) together with its tautological OF,(p) action. The statement of
Theorem 1, up to keeping track of level structures, is then essentially an instance of étale
descent of modules for the étale cover SpecOF,(p) → SpecZ(p). [Indeed, one applies this
to A considered as a sheaf on the category of schemes over Zp, with target the category of
OF,(p)-modules. Descent then tells us that a Γ-descent datum on A is induced from unique
sheaf E of Z(p)-modules on the category of schemes over Zp, by A = E ⊗Z(p)

OF,(p).]

Remark 1.1.2. The group Kp,1 ⊂ H1(Qp) is generally not a parahoric subgroup, but only
a quasi-parahoric subgroup; this causes some technical issues in part (1). To solve them, we
appeal to the the results of [4], where it is shown that integral models with quasi-parahoric
level have good properties.

1.1.3. Igusa stacks. Igusa stacks are certain p-adic analytic objects (Artin v-stacks) asso-
ciated to a Shimura datum (G,X); they were conjectured to exist by Scholze. They were
recently constructed by Zhang [39] in the PEL type case, and in [3] in the Hodge type case.

Let (G,X) be a Shimura datum of Hodge type and a place v above p of the reflex field E of
(G,X). Let F,Γ and (H1,Y1) be as above. Then there is a v-sheaf Igs (H1,Y1) equipped with
a Γ-equivariant map Igs (H1,Y1)→ BunH1 to the stack BunH1 ofH1-bundles on the Fargues–
Fontaine curve, see [3, Theorem I]. This map moreover factors through the open substack
BunH1,µ−1 ⊂ BunH1 corresponding to the set B(H1, µ

−1) ⊂ B(H1) of µ−1-admissible σ-
conjugacy classes, where µ is the H1(Qp) conjugacy class of cocharacters of H1 induced by
the Hodge cocharacter and the place v. We have similar objects for (G,X).
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Theorem 2 (Theorem 6.2.1). If X1(Q,G)→X1(F, G) is injective, then the natural map

Igs (G,X)→ Igs (H1,Y1)
Γ ×(

BunH1,µ
−1

)hΓ BunG,µ−1

is an isomorphism.

Here the superscript hΓ denotes the stacky (or homotopy) fixed points and the superscript
Γ denotes the usual fixed points of a sheaf. As a consequence of Theorem 2 we prove Theorem
6.3.1, which is an analogue of Theorem 1 on the level of v-sheaves, without the assumption
that p is unramified in F or the assumption that F is tamely ramified over Q; we expect this
result to be essentially optimal.

Remark 1.1.4. The reason for taking the fiber product in the statement of Theorem 2 is
because

BunG,µ−1 → BunhΓH1,µ−1

is typically not an isomorphism.

1.2. Motivation. Our motivation for proving Theorem 1 is that it can be used to reduce
questions about the integral models for (G,X) to Γ-equivariant questions about the integral
models for (H,Y) or (H1,Y1). This is useful, because given (G,X) and a prime p, one can
always choose a Galois totally real field F that is unramified at p such that H ⊗ Qp is
quasi-split.

For example, in forthcoming work, Xiao and Zhu [36, 37] will construct exotic Hecke
correspondences between the mod p fibers of different Shimura varieties of Hodge type
at unramified and quasi-split primes. In their work, the Shimura varieties correspond to
certain Shimura data (G,X) and (G′,X′) such that G and G′ are pure inner forms and such
that G⊗Af ≃ G′⊗Af . Their proof relies heavily on the fact that both G⊗Qp and G′⊗Qp

are quasi-split.
These correspondences conjecturally exist for certain pairs (G,X) and (G′,X′), where G

and G′ are pure inner forms, under the more general condition that G ⊗ Apf ≃ G′ ⊗ Apf .
In work in preparation of the authors, see [10], we construct these more general exotic
Hecke correspondences for primes p where G splits over an unramified extension (but is not
necessarily quasi-split), by reducing to the quasi-split case via Theorem 1.

1.3. Proofs of the main theorems. The proof of Theorem 1 proceeds in two steps. We
first prove the theorem on the generic fiber, and then extend to integral models.

1.3.1. To prove Theorem 1 over C, we argue on the level of C-points and reduce to a
concrete question about fixed points of adelic double quotients. To tackle such questions,
we use the methods of non-abelian group cohomology. Results from [33] immediately imply
that for K ⊂ H1(Af ) a Γ-stable compact open subgroup, the natural map

G(Q)\G(Af )/KΓ → (H1(Q)\H1(Af )/K)Γ

is a bijection if both Ker(H1(Γ,H1(Q)) → H1(Γ,H1(Af ))) and H1(Γ,K) are trivial. The
first kernel seems hard to understand directly, and it is not clear to us how to show that
there are any Γ-stable compact open subgroups K ⊂ H1(Af ) with trivial Γ-cohomology.
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The situation is much better when we work with H instead of H1. The kernel

Ker(H1(Γ,H(Q))→ H1(Γ,H(Af )))

can be identified with the kernel of X1(Q,G)→X1(F, G), and if F is tamely ramified over
Q then we prove that there is a cofinal collection of Γ-stable K ⊂ H(Af ) with H1(Γ,K)
trivial, see Section 3.4. The general theory tells us that the natural morphism of action
groupoids [

G(Q)\X× G(Af )/KΓ
]
→ [H(Q)\Y × H(Af )/K]hΓ

is an equivalence if X1(Q,G) → X1(F, G) is injective and H1(Γ,K) = {1}, see Theorem
3.5.1. We prove this statement using some 2-category theory; we give a self-contained
exposition of the results that we need in Appendix A.

To use this to prove Theorem 1 over C, we argue as follows: We know that the composition

G(Q)\X× G(Af )/KΓ → (H1(Q)\Y1 × H1(Af )/K1)
Γ → [H(Q)\Y × H(Af )/K]hΓ

is an equivalence of groupoids, by the results discussed in the previous paragraph. It thus
suffices to prove that the second map is fully faithful, which we do under a minor assumption
on K, see Proposition 3.6.3. This method forces us to work with the Shimura varieties for
(H1,Y1) of level K1 = K ∩ H1(Af ).

1.3.2. We now explain how to extend Theorem 1 from the generic fiber to integral models.
We observe that it suffices to prove that SK1(H1,Y1)

Γ is normal and flat over SpecOE . If
the order of Γ is prime-to-p, then we will prove this by taking Γ-fixed points of the local
model diagram for SK1(H1,Y1) constructed by [14], and using the fact that fixed points of
smooth morphisms are again smooth. The problem then reduces to showing that Γ-fixed
points of the local models for (H1,Y1) give the local models for (G,X). We deduce this from
unramified base change for local models. Here we crucially use the assumption that p is
unramified in F.

When p divides the order of Γ, we can only show that the weak normalization of SK1(H1,Y1)
Γ

is normal and flat over SpecOE . For this, we may argue on the level of the correspond-
ing v-sheaves, where we reduce it to proving that the Γ-fixed points of the integral local
Shimura varieties for Had give the integral local Shimura varieties for Gad. Once again here
we crucially use the assumption that p is unramified in F.

1.3.3. In order to facilitate the arguments sketched in Section 1.3.2, it is important for us to
verify that many constructions in the theory of integral models of Shimura varieties (shtukas,
local models, etc.) are functorial in the triple (G,X,G) in a 2-categorical sense. For example,
we show that the morphisms SK(H,Y)♢/ → ShtH,µ from the (modified) diamond associated
to an integral model of a Shimura variety, see Section 2.3.3, to the stack of G-shtukas of
type µ of Pappas–Rapoport [25], can be upgraded to a weak natural transformation of weak
functors (or pseudo-functors), see Proposition 4.1.4 and Corollary 4.2.2. This is necessary
because this implies that there is an induced map

SK(H,Y)♢/,Γ → (ShtH,µ)
hΓ .
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These induced maps play a crucial role in the proof of Theorem 1. In that proof, we make
use of the 2-categorical theory of non-abelian Galois cohomology theory for the strict (2, 1)-
category of stacks on an arbitrary site. We develop this theory from scratch in Appendix
A.

1.4. Outline of the paper. In Section 2 we discuss preliminaries on perfectoid geometry.
We also recall local models and local shtukas and compute the fixed points of local models
and integral local Shimura varieties. In Section 3 we prove Theorem 1 on the generic fiber.
In Section 4 we discuss integral models of Shimura varieties following Pappas–Rapoport [25],
and construct a 2-categorical enhancement of their shtukas. In Section 4.3, we discuss local
model diagrams for Shimura varieties of Hodge type following [18], and prove Γ-equivariance.
In Section 5 we prove Theorem 1. In Section 6 we introduce Igusa stacks, prove Theorem 2
and deduce Theorem 6.3.1.

In Appendix A we recall some 2-category theory used throughout the paper. The main
question we answers is when taking (2-categorical) fixed points commutes with taking (2-
categorical) quotients.

1.5. Acknowledgements. This project started while both authors were attending the 2022
IHES summer school on the Langlands Program, and we would like to thank the IHES for
providing excellent working conditions. We would also like to thank Ana Caraiani, Brian
Conrad, Sean Cotner, Toby Gee, Richard Taylor, Lie Qian, Rong Zhou and Xinwen Zhu for
helpful discussions. In addition, large portions of this work were written up while the first
author was a visitor at Imperial College London, and while the second author was a visitor
at Stanford University. The authors would like to thank both of these institutions for their
hospitality.

2. Preliminaries

2.1. 2-category theory. At many points in this article, we will be taking fixed points for
the action of a finite group Γ on a stack X . The most reasonable way of doing this seems
to be taking the 2-categorical or homotopy fixed points. For example, if F is a finite Galois
extension of Q with Galois group Γ, then Γ acts on the category of F-vector spaces by
twisting the F-action, and the Γ-homotopy fixed points can be identified with the category
of Q-vector spaces.

We will refer the reader to Appendix A for the definition of a stack (or category) with
Γ-action and the notion of a Γ-equivariant morphism of stacks (or categories) with Γ-action,
see Definition A.1.3. In particular, we note that it is not a property of a morphism to be
Γ-equivariant, but rather an extra structure. To emphasize this, we will sometimes call such
morphisms Γ-equivariant in the 2-categorical sense.

2.2. Non-abelian cohomology. Given a group Γ acting on a (possibly non-abelian) group
H, we denote by H1(Γ, H) the pointed set given by 1-cocycles σ : Γ → H up to H-
conjugacy. We begin with the following simple non-abelian Shapiro’s lemma, which appears
in [33, Section 5.8.(b)] as an exercise left to the reader.
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Lemma 2.2.1. Let Γ be a group and let H be a group with an action of a subgroup Γ′ of Γ.
Then if X := MapΓ′(Γ, H) with the natural left action γ0((hγ)γ∈Γ) = (hγ·γ0)γ∈Γ we have a
natural isomorphism ψ : H1(Γ, X)

∼−→ H1(Γ′, H) .

2.3. Background on perfectoid geometry. In this section we recall some background
on perfectoid spaces. We refer the reader to [25] and [31] for details.

Let k be a perfect field of characteristic p and write Perfk for the category of perfectoid
spaces over k. If k = Fp we write Perf = PerfFp . For any perfectoid space S over k, we
write S

.
× Zp for the analytic adic space defined in [31, Proposition 11.2.1]. In particular,

when S = Spa(R,R+) is affinoid perfectoid, S
.
× Zp is given by

S
.
× Zp = Spa(W (R+)) \ {[ϖ] = 0},

where W (R+) denotes the ring of p-typical Witt vectors of the perfect ring R+, and where
[ϖ] denotes the Teichmülller lift to W (R+) of a pseudo-uniformiser ϖ in R+. The Frobenius
for W (R+) restricts to give a Frobenius operator FrobS on S

.
× Zp. By [31, Proposition

11.3.1], any untilt S♯ of S determines a closed Cartier divisor S♯ ↪→ S
.
× SpaZp. For S in

Perf we define also Y(S) = S
.
× Zp \ {p = 0}.

For any S in Perf, the relative adic Fargues–Fontaine curve over S is the quotient

XS = Y(S)/φZ.

By [8, Proposition II.1.16], the action of FrobS on Y(R,R+) is free and totally discontinuous,
which means that the quotient is well-defined. LetG be a reductive group over Qp. Following
[8], we denote by BunG(S) the groupoid of G-torsors on XS . By [8, Proposition III.1.3],
BunG is a small v-stack on Perf. A morphism f : G → G′ induces a 1-morphism BunG →
BunG′ by pushing out torsors, and the following lemma follows from Lemma A.2.1.

Lemma 2.3.1. The construction of the v-stack BunG for G a reductive group scheme over
Qp extends to a weak functor

{reductive groups over Qp} → {v-stacks on Perf}; G 7→ BunG .

2.3.2. Let B(G) be the set of σ-conjugacy classes in G(Q̆p), equipped with the topology
coming from the opposite of the partial order defined in [28, Section 2.3]. By [35, Theorem
1], there is a homeomorphism

|BunG | → B(G).

If µ is a G(Qp)-conjugacy class of minuscule cocharacters, we let B(G,µ−1) ⊂ B(G) be the
set of µ−1-admissible elements, as defined in [16, Section 1.1.5]; note that this set is closed
in the partial order and thus defines an open substack

BunG,µ−1 ⊂ BunG,

via [29, Proposition 12.9].
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2.3.3. If X is an adic space over Spa(Zp), let X♢ denote the set-valued functor on Perf
given by

X♢(S) = {(S♯, f)}/ ∼

for any S in Perf, where S♯ is an untilt of S and f : S♯ → X is a morphism of adic spaces.
This determines a v-sheaf on Perf by [31, Lemma 18.1.1]. For a Huber pair (A,A+) over
Zp, we write Spd(A,A+) in place of Spa(A,A+)♢, and when A+ = A◦ we write Spd(A)
instead of Spd(A,A+). In particular, we see that Spd(Zp) parametrizes isomorphism classes
of untilts, cf. [31, Definition 10.1.3].

If X is a formal scheme over Spf Zp, then we can consider it as an adic space over Spa(Zp)
using [30, Proposition 2.2.1] and use that adic space to define X ♢. This defines a functor
from formal schemes over Zp to v-sheaves over SpdZp. This functor is fully faithful when
restricted to absolutely weakly normal formal schemes that are flat, separated and formally
of finite type over Spf Zp, see [1, Theorem 2.16].

If X is a scheme over SpecZp, then there are three possible v-sheaves that can be as-
sociated to X: There is X♢, there is X♢/ and there is X⋄, see [1, Definition 2.10] and
[25, Definition 2.1.9]. By [25, Corollary 2.1.8], the functor X 7→ X♢/ is fully faithful when
restricted to schemes that are flat normal and separated locally of finite type over Zp.

For schemes X that are locally of finite type over SpecZp, these admit the following
descriptions, see [1, Remark 2.11]:

• The v-sheaf X⋄ can be identified with
(
X̂
)♢

, where X̂ is the p-adic formal scheme

over Spf Zp given by the completion of X in its special fiber. In [25], they write X♦

for X⋄.
• The v-sheaf X♢ can be identified with (Xan)♢, where Xan is the ‘analytification’ of
X, see [1, Remark 2.11].
• The v-sheaf X♢/ is created by gluing X⋄ to X♢

Qp
along the open immersion X⋄

Qp
→

X♢
Qp

.

2.4. Local Models. In this section we let G be a connected reductive group over finite
extension L of Qp and let µ be a G(L)-conjugacy class of minuscule cocharacters of G
with reflex field E ⊂ L. We fix a parahoric model G of G over OL and we let Gad be the
corresponding parahoric model for Gad. We let GrG → SpdZp be the Beilinson–Drinfeld
affine flag variety of G, see [1, Section 4.1], considered as a v-sheaf on Perf. There is a closed
subfunctor

GrG,µ ⊂ GrG ×SpdOL
SpdE,

see [1, Corollary 4.6], whose closure in GrG ×SpdOL
SpdOE defines a closed subfunctor

Mv
G,µ ⊂ GrG ×SpdOL

SpdOE ,

called the v-sheaf local model attached to (G, µ). The formation of Mv
G,µ is functorial for

morphisms of pairs (G1, µ1)→ (G2, µ2), and preserves closed embeddings by [1, Proposition
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4.16]. Moreover, the morphism

Mv
G,µ →Mv

Gad,µ

induced by (G, µ)→ (Gad, µ) is an isomorphism.

2.4.1. Let L′ ⊂ L be a finite extension of L and let E′ ⊃ L′ be the reflex field of µ considered
as a G(L)-conjugacy class of cocharacters of GL′ .

Lemma 2.4.2. There is a natural isomorphism

Mv
G,µ ×SpdOE

SpdOE′ →Mv
GOL′ ,µ

.

Proof. The analogous result for

GrG ×SpdOL′ SpdOL′ → GrGOL′

follows directly from the definition, see [1, Section 4.1]. It also follows directly from the
definition that this induces a natural isomorphism

GrG,µ×SpaE SpaE′ → GrGL′ ,µ .

Since the map SpecOE′ → OE is finite flat, it is in particular proper and open. Thus the
map SpdOE′ → SpdOE is partially proper and open. It then follows from [9, Corollary
2.9], that the formation of v-sheaf closures commutes with basechanging from SpdOE to
SpdOE′ . Thus the natural map

Mv
G,µ ×SpdOE

SpdOE′ →Mv
GOL′ ,µ

.

is an isomorphism. □

Now suppose that L′/L is Galois and let Γ be its Galois group. Define H := ResOL′/OL
G

and let µ be the induced conjugacy class of cocharacters of H := HL. The natural map
(G, µ)→ (H, µ) induces a natural map

Mv
G,µ →Mv

H,µ,(2.4.1)

Lemma 2.4.3. If L′/L is unramified, then there is a Γ-equivariant isomorphism

Mv
H,µ ×SpdOE

SpdOE′ →
∏
γ∈Γ

Mv
G,µ ×SpdOE

SpdOE′ ,

under which the natural map from equation 2.4.1 corresponds to the inclusion of the diagonal.

Proof. By Lemma 2.4.2, there is a natural (in particular Γ-equivariant) isomorphism

Mv
H,µ ×SpdOE

SpdOE′ →Mv
HOL′ ,µ

.

There is a Γ-equivariant isomorphism HOL′ →
∏
γ∈Γ GO′

L
since L′/L is unramified. Since

the formation of local models commutes with direct products, see [1, Proposition 4.16], this
induces a Γ-equivariant isomorphism

Mv
HOL′ ,µ

→
∏
γ∈Γ

Mv
GOL′ ,µ

.
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Using Lemma 2.4.2 again, we again identify the right-hand side with∏
γ∈Γ

Mv
G,µ ×SpdOE

SpdOE′ .

Moreover, under these identifications the natural map

Mv
G,µ →Mv

H,µ

corresponds to the inclusion of the diagonal into the product. □

2.4.4. Now let SpecOL′ → SpecOL be a finite étale Galois cover with Galois group Γ
and generic fiber SpecL′ → SpecL. Define H := ResOL′/OL

G and let µ be the induced
conjugacy class of cocharacters of H := HL. Then Γ-acts on H in a way that preserves µ
and thus acts on Mv

H,µ. The natural map of (2.4.1) is Γ-equivariant for the trivial Γ-action
on the source.

Let p be a maximal ideal of OL′ , let OL′′ be the local ring of OL′ at p with fraction field
L′′. Let Γ′′ ⊂ Γ be the stabilizer of p, which is also the Galois group of L′′/L. Choose an
embedding L′′ → L and let E′′ be the reflex field of µ considered as an GL′′(L)-conjugacy
class of cocharacters of GL′′ .

Lemma 2.4.5. There is a Γ-equivariant isomorphism

Mv
H,µ ×SpdOE

SpdOE′′ →
∏
γ∈Γ

Mv
G,µ ×SpdOE

SpdOE′ ,

under which the natural map from equation 2.4.1 corresponds to the inclusion of the diagonal.

Proof. Since SpecOL′ → SpecOL is Galois there is a Γ-equivariant isomorphism

SpecOL′ → homΓ′′(Γ, SpecOL′′).

Similarly there is a Γ-equivariant isomorphism

H → homΓ′′(Γ,ResOL′′/Zp
GOL′′ ) ≃

∏
Γ′′\Γ

ResOL′′/Zp
GOL′′ .

Since the formation of local models commutes with products by [9, Corollary 2.9], the lemma
reduces to Lemma 2.4.3. □

2.4.6. Recall that there are unique (up to unique isomorphism) flat and (absolutely) weakly
normal schemes MG,µ over OE with associated v-sheaf isomorphic to Mv

G,µ, by [1, Theorem
1.11].

Proposition 2.4.7. The natural map of equation (2.4.1) induces an isomorphism

MG,µ →MΓ
H,µ.
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Proof. By [1, Proposition 2.18], the functor sending a proper flat absolutely weakly nor-
mal scheme over SpecOL to its associated v-sheaf is fully faithful. This functor moreover
commutes with base change along SpecOE′′ → SpecOE and with fiber products. Thus by
Lemma 2.4.5 there is a Γ-equivariant isomorphism

MH,µ ×SpecOE
SpecOE′′ →

∏
γ∈Γ

MG,µ ×SpecOE
SpecOE′′

under which the natural map MG,µ → MH,µ corresponds to the inclusion of the diagonal.
The proposition follows immediately from this description. □

Corollary 2.4.8. The natural map

[MG,µ/G]→ [MH,µ/H]hΓ

is an isomorphism.

Proof. After basechanging to Spa(OL) we have an isomorphism H ≃ hom(Γ,G) and thus it
follows from Lemma 2.2.1 that H1(Γ,H) vanishes. The corollary now follows from Proposi-
tion 2.4.7 and Corollary A.2.13. □

2.5. Shtukas. In this section we let G be a connected reductive group over Qp and µ a
G(Qp)-conjugacy class of minuscule cocharacters of G with reflex field E ⊂ Qp. We fix a
parahoric model G of G over Zp.

Recall from [25, Definition 2.4.3] that a G-shtuka over a perfectoid space S with leg at an
untilt S♯ is defined to be a quadruple: (Q,P, ϕP , κ) where Q and P are G-torsors over the
analytic adic space S

.
× Zp, where κ : Q → (FrobS ×1)∗ P is an isomorphism of G-torsors

and where

ϕP : Q
∣∣
S

.
×Zp\S♯ → P

∣∣
S

.
×Zp\S♯

is an isomorphism of G-torsors over S
.
× Zp \ S♯. Here S♯ ⊂ S

.
× Zp is the Cartier divisor

coming from the untilt S♯. To be precise, here we consider (FrobS ×1)∗ P as a G-torsor via
the isomorphism (FrobS ×1)∗ G → G coming from the fact that G is defined over Zp. Note
that the data of Q and κ is superfluous in our definition, but it will be useful for us later to
keep track of this information. In Section 4 we will often omit Q and κ from the notation

2.5.1. Let PerfZp be the category of perfectoid spaces S of characteristic p equipped with
a map S♢ → SpdZp, equipped with its v-topology. Let ShtG be the stack of G-shtukas
over PerfZp , considered as a category fibered in groupoids over PerfZp . Explicitly, this
means that it is the category whose objects are quintuples (S → SpdZp,Q,P, ϕP , κ), where
S → SpdZp is an object of PerfZp and (Q,P, ϕP , κ) is a G-shtuka over S. A morphism f :
(S → SpdZp,Q,P, ϕP , κ) → (S′ → SpdZp,Q′,P ′, ϕP ′ , κ′) is a triple (f, fP , fQ) consisting
of a morphism f : S → S′ and G-equivariant morphisms fP : P → P ′, fQ : Q → Q′ fitting



12 POL VAN HOFTEN AND JACK SEMPLINER

in a pair of Cartesian diagrams

P P ′

S
.
× Zp S′×̇Zp

fP

f×1

Q Q′

S
.
× Zp S′×̇Zp

fQ

f×1

such that the following diagrams commute

Q
∣∣
S

.
×Zp\S♯ P

∣∣
S

.
×Zp\S♯

P
∣∣
S′×Zp\S♯ Q′∣∣

S′×Zp\S♯

ϕP

fP fQ

ϕP′

Q (FrobS ×1)∗ P

Q′ (FrobS′ ×1)∗ P ′,

fQ

κ

κ′

where the right vertical arrow in the second diagram is the arrow induced by fP . Since µ is
defined over E, there is a closed substack1

ShtG ⊂ ShtG ⊗SpdZp SpdOE ,

defined as those shtukas where ϕP has relative position bounded by the v-sheaf local model

Mv
G,µ ⊂ GrG ⊗SpdZp SpdOE ,

see [25, Definition 2.4.4]. It is clear that a homomorphism f : G → G′ of parahoric group
schemes induces a morphism.

f : ShtG → ShtG′

by pushing out torsors. Noting that the reflex field E′ of µ′ is contained in E, this restricts
to a morphism

ShtG ×SpdOE
SpdOE′ → ShtG′,µ′ ,

if f(µ) = µ′. This upgrades to a 2-categorical statement as follows: Fix a field L ⊂ Qp and
let ShtPrL be the category of pairs (G, µ) such that the reflex field E(µ) of µ is contained in L,
and where the morphisms are the obvious morphisms of pairs. We will often write E for E(µ)
if µ is clear from the context. We let D◦

L be the strict (2, 1)-category of categories fibered in
groupoids over PerfOL

and DL the full subcategory of categories fibered in groupoids over
PerfL.

Lemma 2.5.2. There is a weak functor Sht : ShtPrL → D◦
L, which on objects sends (G, µ)

to ShtG,µ×SpdOE
SpdOL and which sends a morphism (G, µ) → (G′, µ′) to the induced

morphism ShtG,µ×SpdOE
SpdOL → ShtG,µ×SpdOE′ SpdOL induced by pushing out torsors

along G → G′.

1Here by ShtG ⊗Spd Zp SpdOE we mean the category fibered in groupoids over PerfOE given by the fiber
product construction of [34, Lemma 0040].
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Proof. A morphism f : G → G′ induces a morphism ShtG → ShtG′ by sending (S →
SpdZp,Q,P, ϕP , κ) to (S → SpdZp,Q ×G G′,P ×G G′, ϕP×GG′ , κ′). Here κ′ is the unique
isomorphism induced by κ, using the fact that f : G → G′ is defined over Zp and thus
commutes with FrobS . To turn this into a weak functor, we use the coherence data for
pushing out torsors coming from the proof of Lemma A.2.1.

As discussed above, this morphism restricts to a morphism between ShtG,µ and ShtG′,µ′

and thus induces a morphism ShtG,µ×SpdOE
SpdOL → ShtG′,µ′ ×SpdOE′ SpdOL. □

2.6. Integral local Shimura varieties. In this section we let G be a connected reductive
group over Qp and µ a G(Qp)-conjugacy class of minuscule cocharacters of G with reflex field
E ⊂ Qp. We fix a parahoric model G of G over Zp. It follows from Lemma A.2.1 that there
is a weak functor Bun from the category of reductive groups over Qp to the strict (2, 1)-
category of v-stacks on Perf. Recall that there is a faithful morphism BL◦ : ShtG,µ → BunG,
as explained in [25, Section 2.2.2], see [3, Section 2.3.3].

Lemma 2.6.1. There is a weak natural transformation Sht→ Bun of weak functors ShtPrL →
StkPerf , giving BL◦ : ShtG,µ → BunG on objects.

Proof. This comes down to checking that pushing out torsors is compatible with descending
them from Y[r,∞)(S) (notation as in [25, Section 2.2.2]) to XS , which is straightforward. □

For b : SpdFp → ShtG,µ we defineMint
G,b,µ as the 2-fiber product

Mint
G,b,µ ShtG,µ

SpdFp BunG .
b

The universal property of the fiber product induces a natural map x0 : SpdFp → Mint
G,b,µ.

Note that a morphism of triples (G, µ, b) → (G′, µ′, b′) induces a morphism Mint
G,b,µ →

Mint
G′,b′,µ′ taking x0 to x′0. It is straightforward to check that this gives a functor from

the category of triples (G, µ, b) with reflex field contained in L, to D◦
OL

, sending

(G, µ, b) 7→ Mint
G,b,µ ⊗SpdOE

SpdOL.

2.6.2. Fixed points of integral local Shimura varieties. Let SpecOL → SpecZp be a finite
étale Galois cover with Galois group Γ and generic fiber SpecL → SpecQp. Define H :=
ResOL/Zp

GOL
and let µ be the induced conjugacy class of cocharacters of H := HQp . Then

Γ-acts on H in a way that preserves µ and thus acts on ShtH,µ → PerfOE
by Lemma 2.5.2.

Lemma 2.6.3. Let X be an adic space over Spa(Zp,Zp), then cocycles σ : Γ → H(X) are
trivial étale locally on X.

Proof. After basechanging to Spa(OL,OL), we have an isomorphism H ≃ hom(Γ,G) and
the result then follows from Lemma 2.2.1. □



14 POL VAN HOFTEN AND JACK SEMPLINER

Corollary 2.6.4. Consider the stack BH on the category of adic spaces over Spa(Zp,Zp)
equipped with the étale topology. Then the natural map

BG → (BH)hΓ

is an equivalence.

Proof. This is a direct consequence of Lemma 2.6.3 and Proposition A.2.11. □

2.6.5. Homotopy fixed points of shtukas. There is a natural map ShtG → ShthΓH of categories
fibered in groupoids over PerfZp ; this follows from Lemma 2.5.2 and Lemma A.1.9.

Lemma 2.6.6. The natural map

ShtG → ShthΓH

is an isomorphism.

Proof. To prove that this is an equivalence, it suffices to do this fiberwise over SpdZp; so
fix S → SpdZp corresponding to an untilt S♯ of S. The category of H-shtukas over S can
be described as the 2-fiber product

ShtH(S) BH(S
.
× Zp)

BH(S
.
× Zp) BH(S

.
× Zp \ S♯)× BH(S

.
× Zp),

ΓFrobS

∆

where ∆ is the diagonal and where ΓFrobS is the graph of pullback along FrobS . This diagram
is Γ-equivariant because the right vertical and bottom horizontal maps are equivariant by
Lemma A.2.1. Lemma A.1.11 tells us that the homotopy fixed points of the diagram give a
2-Cartesian diagram

ShtH(S)
hΓ BH(S

.
× Zp)hΓ

BH(S
.
× Zp)hΓ BH(S

.
× Zp \ S♯)hΓ × BH(S

.
× Zp)hΓ,

ΓFrobS

∆

which after repeatedly applying Corollary 2.6.4 can be identified with the 2-Cartesian dia-
gram

ShtH(S)
hΓ BG(S

.
× Zp)

BG(S
.
× Zp) BG(S

.
× Zp \ S♯)× BG(S

.
× Zp).

ΓFrobS

∆

By construction, the map ShtG to ShtH(S)
hΓ compatible is compatible with the 2-fiber

product description, and thus an isomorphism. □
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2.6.7. Recall that we also use µ to denote the induced H(Qp)-conjugacy class of cocharac-
ters of H, and we will later do this for all other groups.

Lemma 2.6.8. The natural map

ShtG,µ → ShthΓH,µ

is an isomorphism.

Proof. This follows from Lemma 2.6.6 as soon as we can prove that a G-shtuka whose induced
H-shtuka is bounded by µ, is itself bounded by µ. This follows from the fact that the natural
isomorphism

GrG → GrΓH

induces an isomorphism Mv
G,µ →Mv,Γ

H,µ, see Proposition 2.4.7. □

Lemma 2.6.9. Let SpecL→ SpecQp be a finite étale Galois cover (not necessarily unram-
ified) with Galois group Γ and let H = ResL/QGL. Then the natural map

BunG → BunhΓH

is an isomorphism.

Proof. It follows from the proof of Corollary 2.6.4 that

BG→ (BH)hΓ

is an equivalence on the category of adic spaces over Spa(Qp,Zp). Indeed, the point is that
we can use Lemma 2.2.1 after the finite étale cover Spa(L,OL) → Spa(Qp,Zp) and then
conclude using Corollary A.2.13. □

Now we return to the assumption that SpecOL → SpecZp is a finite étale cover with
Galois group Γ. If b : SpdFp → ShtH,µ is induced by b : SpdFp → ShtG,µ, then there is an
action of Γ onMint

H,b,µ.

Proposition 2.6.10. The natural map Mint
G,b,µ →

(
Mint

H,b,µ

)Γ
is an isomorphism.

Proof. The Cartesian diagram defining Mint
H,b,µ is Γ-equivariant by Lemma 2.6.1 and the

fact that b is induced by b : SpdFp → ShtG,µ. The proposition then follows by taking
Γ-homotopy fixed points of this diagram, and using Lemma A.1.11 in combination with
Lemmas 2.6.8 and 2.6.9. □

3. Fixed points of Shimura varieties

Let (G,X) be a Shimura datum and let F be a totally real Galois extension of Q with
Galois group Γ. Let H := ResF/QGF equipped with its natural action of Γ. For h : S→ GR
in X we let Y be the H(R)-conjugacy class of the composition h : S → GR → HR, this does
not depend on the choice of h. Then (H,Y) is a Shimura datum and the action of Γ on H
is by automorphisms of Shimura data. Following a suggestion of Rapoport, we call (H,Y)
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the Piatetski-Shapiro construction for (G,X) associated to F.2 The natural closed immersion
G → H is a morphism of Shimura data. The goal of this section is to investigate the fixed
points of the action of Γ on the Shimura varieties for (H,Y), and to compare them to the
Shimura varieties for (G,X).

3.1. The case of tori. As a toy example, we study the case when G = T is a torus with
R-split rank zero. Then the R-split rank of H = ResF/Q TF is also zero, and thus for neat
K ⊂ H(Af ) the natural map

H(Q)→ H(Af )/K

is injective by Lemma 3.2.1. The cokernel of this injection defines the set of C-points of the
Shimura variety ShK(H,Y). If K is Γ-stable, then Γ acts on ShK(H,Y) and there is a long
exact sequence

0→ KΓ → G(Apf )→ (H(Af )/K))Γ → H1(Γ,K)→ H1(Γ,H(Af ))→ · · ·

We will see in Proposition 3.4.7 that it is possible to find arbitrary small Γ-stable K with
H1(Γ,K) = 0, at least if F is tamely ramified over Q. So from now on we will assume that
H1(Γ,K) = 0, which implies that the natural map

G(Af )/KΓ → (H(Af )/K))Γ .

is an isomorphism and that the natural map

H1(Γ,H(Af )/K)→ H1(Γ,H(Af ))

is injective. It moreover implies that there is a long exact sequence

0→ G(Q)→ G(Af )/KΓ → ShK(H,Y)Γ(C)→ H1(Γ,H(Q))→ H1(Γ,H(Af )/K).

Thus the obstruction to the natural map

ShKΓ(G,X)(C)→ ShK(H,Y)Γ(C)

being a bijection is given by the kernel of

H1(Γ,H(Q))→ H1(Γ,H(Af )).

We will later prove, see Lemma 3.3.1, that this can be identified with the kernel of

X1(Q,G)→X1(F, G),

in particular, the obstruction is finite. In the rest of the section, we will prove that the same
result, suitably interpreted, holds for arbitrary Shimura varieties.

2This construction was used by Borovoi [2] and Milne [23] in their proof of the conjecture of Langlands
on conjugation of Shimura varieties, and they credit it to Piatetski-Shapiro.
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3.2. Shimura varieties and Shimura stacks. Let the notation be as in the start of
Section 3 and let K ⊂ H(Apf ) be a compact open subgroup. It turns out that it is easier to
analyze the Γ-homotopy fixed points of the stack quotient/action groupoid[

H(Q)\
(
Y × H(Apf )/K

)]
,(3.2.1)

than it is to analyze the Γ-fixed points of the Shimura variety ShK(H,Y) with C-points

ShK(H,Y)(C) = H(Q)\
(
Y × H(Apf )/K

)
.

Thus it is important for us to understand when the Shimura variety for (H,Y) is equal to
the stack quotient in (3.2.1) (for sufficiently small K).

Recall Milne’s axiom SV5 for a Shimura datum (G,X) from [24, p. 64]; it asks that
Z(Q) ⊂ Z(Af ) is discrete, where Z = ZG is the center of G. By [17, Lemma 1.5.5] this
happens if and only if the Q-split rank of Z is equal to the R-split rank of Z. The following
lemma is well known, see [24, Proposition 3.1, Lemma 5.13].

Lemma 3.2.1. If axiom SV5 holds for (G,X), then for neat K the group G(Q) acts freely
on X× G(Apf )/K.

Unfortunately if SV5 holds for (G,X) then it often does not hold for (H,Y). For example
if ZG = Gm, then ZH = ResF/QGm, which has Q-split rank one but R-split rank equal to
[F : Q]. We make this observation precise in the following lemma.

Lemma 3.2.2. Suppose that (G,X) satisfies SV5 and that [F : Q] > 1. Then (H,Y) satisfies
SV5 if and only if the R-split rank of ZG is zero.

Proof. By [17, Lemma 1.5.5], there is an isogeny ZG ∼ T1 × T2 where T1 is Q-split and T2

has R-rank zero. This induces an isogeny

ZH ≃ ResF/Q T1,F × ResF/Q T2,F.

The torus ResF/Q T2,F still has R-rank zero. The torus ResF/Q T1,F has Q-rank equal to the
Q-split rank d of ZG, and has R-split rank equal to d · [F : Q]. Thus the Q-split rank of ZH

is equal to the R-split rank of ZH if and only if d = 0. □

3.3. Fixed points of adelic quotients. Let the notation be as in the start of Section 3.
Before we investigate the homotopy fixed points of the groupoid (3.2.1), we first investigate
the fixed points of H(Q)\Y × H(Af ). To understand the Γ-fixed points of the quotient
H(Q)\H(A), we need to understand the map H1(Γ,H(Q))→ H1(Γ,H(A)). For this we will
use the inflation maps

H1(Γ,H(Q)) = H1(Γ,G(F))→ H1(GalQ,G(Q)) =: H1(Q,G)

H1(Γ,H(A)) = H1(Γ,G(AF))→ H1(GalQ,G(A)),

where A = A⊗QQ and AF = A⊗Q F. As explained on [27, p. 298], there is an injective map

H1(GalQ,G(A))→
∏
v

H1(GalQv ,G(Qv)),
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such that the induced map H1(GalQ,G(Q))→
∏
vH

1(GalQv ,G(Qv)) is the natural map.

Lemma 3.3.1. The inflation map induces a bijection

ker
(
H1(Γ,H(Q))→ H1(Γ,H(A))

)
→ ker

(
X1(Q,G)→X1(F,G)

)
.

Proof. The inflation map H1(Γ,H(Q)) → H1(Q,G) is injective by [33, Section 5.8.(a)] and
lands X1(Q,G) by the discussion above, and so we are done. □

Since F is totally real, it follows that H(R) = Hom(Γ,G(R)) and therefore by Lemma 2.2.1
that H1(Γ,H(R)) = {1}. Thus we observe that

ker
(
H1(Γ,H(Q))→ H1(Γ,H(Af ))

)
= ker

(
H1(Γ,H(Q))→ H1(Γ, H(A))

)
.

Lemma 3.3.2. If X1(Q,G)→X1(F, G) is injective, then the natural map

G(Q)\X× G(Af )→ (H(Q)\Y × H(Af ))Γ

is a bijection.

Proof. By [33, Corollary 1 on page 50], there is a short exact sequence of pointed sets

1→ H(Q)Γ → H(A)Γ → (H(Q)\H(A))Γ → H1(Γ,H(Q))→ H1(Γ,H(A))→ · · ·

It moreover follows from loc. cit. that if H1(Γ,H(Q)) → H1(Γ,H(A)) has trivial kernel
then H(A)Γ → (H(Q)\H(A))Γ is surjective. Thus by Lemma 3.3.1 and our assumption, the
natural map

G(Q)\G(A)→ (H(Q)\H(A))Γ

is a bijection. Let KX ⊂ G(R) be the stabilizer of some point x ∈ X and let KY be its
stabilizer inside of H(R). Since F is totally real it follows that H(R) = Hom(Γ,G(R)) and
also that KY = Hom(Γ,KX); thus H1(Γ,KY) = {1} and KX = KΓ

Y.
We can identify the natural map of the lemma with

G(Q)\G(A)/KX → (H(Q)\H(A)/KY)
Γ .

The lemma now follows from the fact that H1(Γ,KY) = {1} in combination with Corollary
A.2.13. □

3.4. Constructing good compact open subgroups. In order to apply Lemma 3.3.2 to
Shimura varieties (or stacks), we need to understand the Γ-cohomology of compact open
subgroups of H(Af ). In this section, we are going to show that there exist many compact
open subgroups with vanishing Γ-cohomology, at least if F is tamely ramified over Q.

Let p be a prime number and write OF := OF ⊗ Zp. It is a finite flat algebra over Zp
equipped with an action of Γ. If G is a smooth affine group scheme over Zp with generic
fiber isomorphic to G := G⊗Qp, we define H := ResOF /Zp

GOF
. It is a smooth affine group

scheme over Zp with generic fiber isomorphic to ResF/Qp
GF , where F = F⊗QQp. Moreover

the Galois group Γ acts on H.

Lemma 3.4.1. As G runs over all smooth affine group schemes over Zp with connected spe-
cial fiber and with generic fiber isomorphic to G, the groups H(Zp) form a cofinal collection
of compact open subgroups of H(Qp).
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Proof. By the results [13, Remark A.5.14, Lemma A.5.15] we can construct a sequence
of smooth group schemes G1 ← G2 ← G3 ← · · · over Zp, such that: The induced maps
Gi+1,Qp → Gi,Qp are isomorphisms, there is an isomorphism G1,Qp ≃ G and by [13, Lemma
A.5.13] we have

∞⋂
i=1

(ResOF /Zp
Gi,OF

)(Zp) = {1}.

The lemma follows by replacing each Gi with the open subgroup whose special fiber is the
identity component of Gi,Fp . □

We now show that if p is unramified in F, then the cohomology of H(Zp) is trivial.

Lemma 3.4.2. If p is unramified in F, then for each smooth affine group scheme G over Zp
with connected special fiber and with generic fiber isomorphic to G, the group H(Zp) = G(OF )
satisfies

H1(Γ,H(Zp)) = {1}.

Proof. Choose a prime p of F above p and let Γ′ ⊂ Γ be its stabilizer. Then there is a
Γ-equivariant isomorphism of rings

OF ≃ MapΓ′(Γ,OF,p),

which induces a Γ-equivariant isomorphism of groups

H(Zp) = G(OF )
= MapΓ′(Γ,G(OF,p)).

By Lemma 2.2.1, it then suffices to show that

H1(Γ′,G(OF,p)) = {1}.

Consider the inflation map (which is injective by [33, Section 5.8.(a)])

H1(Γ′,G(OF,p))→ H1(Gal(Qur
p /Qp,G(Zur

p )).

Because H is smooth with connected special fiber, Lang’s lemma tells us that

H1(Gal(Qur
p /Qp),G(Zur

p )) = H1(Gal(Fp/Fp),G(Fp)) = {1}

and so we are done. □

If p is coprime to the order of Γ, then the cohomology of H(Zp) is trivial if it is a pro-p
group.

Lemma 3.4.3. Let Γ be a finite group acting on a finite p-group M . If the order of Γ is
coprime to p, then H1(Γ,M) = {1}.

Proof. We prove this by strong induction on k where pk is the order of M . If k = 1 then
the result is true because then M ≃ Fp is abelian and Γ is a group of order prime-to-p.
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To prove the induction step, we use the well-known fact that the center Z ⊂ M of M is
nontrivial because M is a p-group. Since Γ acts via group homomorphisms, we see that Z
is Γ-stable. We now study the long exact sequence in Γ-cohomology for

1→ Z →M →M/Z → 1.(3.4.1)

The induction hypothesis tells us that H1(Γ,M/Z) = {1} and because Z is abelian and of
p-power order it follows that H1(Γ, Z) = {1}. The induction step then follows from the long
exact sequence in Γ-cohomology for (3.4.1). □

Lemma 3.4.4. If p is coprime to the order of Γ and H(Zp) is pro-p, then H1(Γ,H(Zp)) =
{1}.

Proof. There is a Γ-equivariant identification H(Zp) = lim←−nH(Z/p
nZ). Let σ : Γ→ H(Zp)

be a cocycle and let P be the (possibly empty) set of elements h ∈ H(Zp) such that for all
γ ∈ Γ we have 1 = h · σ(γ) · αγ(h−1), where αγ : H(Zp) → H(Zp) denotes the action of γ.
Then H(Zp)Γ acts on P by left multiplication on h and this action is simply transitive if P
is nonempty. The lemma is asserting that P is nonempty, which we will now prove.

For a positive integer n, we let Pn be the set of elements hn ∈ H(Z/pnZ) such that
for all γ ∈ Γ we have 1 = hn · σn(γ) · αγ(h−1

n ), where σn is the composition of σ with
H(Zp) → H(Z/pnZ). Then Pn is nonempty by Lemma 3.4.3 and H(Z/pnZ)Γ acts simply
transitively on Pn by left multiplication on hn. There are maps Pn+1 → Pn which are
H(Z/pn+1Z)Γ-equivariant via the natural map H(Z/pn+1Z)Γ → H(Z/pnZ)Γ, and it follows
from the definitions that the natural map

P → lim←−
n

Pn

is a bijection. To show that P is nonempty, it is therefore enough to show that the transition
maps Pn+1 → Pn are surjective. For this, we consider the Γ-equivariant short exact sequence

1→ Q→ H(Z/pn+1Z)→ H(Z/pnZ)→ 1

defining Q. Note that Q is again a p-group, and thus it follows from Lemma 3.4.3 and the
long exact sequence in Γ-cohomology that H(Z/pn+1Z)Γ → H(Z/pnZ)Γ is surjective. We
deduce that Pn+1 → Pn is surjective, which concludes the proof. □

Lemma 3.4.5. Suppose that p is tamely ramified in F. Let G be a smooth affine group
scheme over Zp with connected special fiber and with generic fiber isomorphic to G. If
H(Zp) = G(OF ) is a pro-p group then

H1(Γ,H(Zp)) = {1}.

Proof. Choose a prime p of F above p and let L be the completion of F at p. Let Gal(L/Qp) ⊂
Γ be the stabilizer of p. As in the proof of Lemma 3.4.2, we can use Lemma 2.2.1 to reduce
the lemma to proving that

H1(Gal(L/Qp),G(OL)) = {1}.
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Let L0 ⊂ L be the maximal unramified subfield of L and consider the short exact sequence
of Galois groups

1→ IL → Gal(L/Qp)→ Gal(L0/Qp)→ 1.

Then we get an inflation restriction exact sequence of pointed sets

· · · → H1(Gal(L0/Qp),G(OL)IL)→ H1(Gal(L/Qp),G(OL))→ H1(IL,G(OL)).

The natural map G(OL0) → G(OL)IL is an isomorphism and so the first term is trivial by
Lemma 3.4.2. The assumption that p is tamely ramified in F means that IL has order prime
to p and thus H1(IL,G(OL)) vanishes by Lemma 3.4.4 and the fact that H(Zp) is pro-p. It
now follows from [33, Corollary 1 on p. 52] that H1(Gal(L/Qp),G(OL)) = {1}. □

3.4.6. The results proved above provide many compact open subgroups K ⊂ H(Apf ) that
are Γ-stable and have H1(Γ,K) = {1}, at least when F is tamely ramified over Q.

Proposition 3.4.7. Suppose that F is tamely ramified over Q. Then the collection of com-
pact open subgroups K ⊂ H(Af ) that are Γ-stable and satisfy H1(Γ,K) = {1} is cofinal in
the set of all compact open subgroups of H(Af ).

We will call such compact open subgroups good, and we will use the same terminology
for Γ-stable compact open subgroups K ⊂ G(ASf ), for some finite set of places S of Q, that
satisfy H1(Γ,K) = {1}.

Proof of Proposition 3.4.7. We can choose groups K of the form

K =
∏
p

Kp,

with Kp = H(Zp) for H = ResOF /Zp
GOF

for some smooth affine group scheme G over Zp
with connected special fiber and generic fiber G⊗Qp, such that G is a reductive model of G
for all but finitely many p. This collection of compact open subgroups K ⊂ H(Af ) is cofinal
by Lemma 3.4.1. We can moreover assume that either p is unramified in F or that Kp is a
pro-p group, without affecting co-finality.

Then for primes p unramified in F we have

H1(Γ,Kp) = {1}

by Lemma 3.4.2, and for primes p ramified in F we have H1(Γ,Kp) = {1} by Lemma 3.4.5.
Thus we find that

H1(Γ,K) =
∏
p

H1(Γ,Kp) = {1}

and the result is proved. □
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3.5. Homotopy fixed points of Shimura stacks. Let the notation be as in the beginning
of Section 3. If K ⊂ H(Af ) is a Γ-stable compact open subgroup then there is a natural
morphism of groupoids (see Section A.2.6)[

G(Q)\
(
X× G(Af )/KΓ

)]
→ [H(Q)\ (Y × H(Af )/K)]hΓ .(3.5.1)

In this section we will investigate when this morphism is an equivalence.

Theorem 3.5.1. If K ⊂ H(Af ) is a good compact open subgroup and if X1(Q,G) →
X1(F, G) is injective, then the natural functor[

G(Q)\
(
X× G(Af )/KΓ

)]
→ [H(Q)\ (Y × H(Af )/K)]hΓ

is an equivalence of groupoids.

It follows from the discussion in Section 3.1 that the assumption that X1(Q,G) →
X1(F, G) is injective is necessary. It follows from Section 3.1 that it is necessary that
H1(Γ,K)→ H1(Γ,H(Af )) has trivial kernel.

Corollary 3.5.2. Suppose that the R-split rank of the center of G is zero. If K ⊂ H(Af )
is a neat and good compact open subgroup and X1(Q,G)→X1(F, G) is injective, then the
natural morphism of E-varieties

ShKΓ(G,X)→ ShK(H,Y)Γ

is an isomorphism.

Proof. It suffices to prove this result after basechanging to C. By [7, Proposition 4.2], the
target is smooth because ShK(H,Y) is smooth. Therefore, it is enough to prove that the
map induces a bijection on C-points. Now recall from Lemma 3.2.2 that both (G,X) and
(H,Y) satisfy SV5. Since K is neat it follows that KΓ = K∩G(Af ) is neat and so by Lemma
3.2.1, the groupoid quotients in the statement of Theorem 3.5.1 are equivalent to the set
theoretic quotients. The corollary now follows from Theorem 3.5.1. □

To prove Theorem 3.5.1, it is more convenient to work with a different presentation of the
morphisms of groupoids in equation (3.5.1). Informally, we want to swap around the order
in which we are taking the quotient.3

A compact open subgroup K ⊂ H(Af ) acts on Y × H(Af ) by k · (x, g) = (x, g · k). This
action commutes with the action of H(Q) and therefore descends to an action of K on

H(Q)\(Y × H(Af )).
Moreover, if K is Γ-stable then this action is Γ-semilinear and thus induces an action of Γ
on the quotient stack of H(Q)\(Y × H(Af )) by K. There is moreover an action of KΓ on
G(Q)\(X× G(Af )) and the natural map

G(Q)\(X× G(Af ))→ H(Q)\(Y × H(Af ))
induces a Γ-equivariant map of quotient stacks, see Section A.2.6. The following lemma tells
us that we can indeed swap around the order in which the quotient is taken.

3What follows is presumably a tautology for the readers well versed in 2-category theory. We have opted
to spell out the details for our own benefit.
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Lemma 3.5.3. The natural functor[
G(Q)\

(
X× G(Af )/KΓ

)]
→ [H(Q)\ (Y × H(Af )/K)]hΓ

is an equivalence if and only if[
(G(Q)\ (X× G(Af ))) /KΓ

]
→ [(H(Q)\ (Y × H(Af ))) /K]hΓ

is an equivalence.

Proof. This is a straightforward consequence of Lemma A.2.3 and equation A.2.1. □

Proof of Theorem 3.5.1. It follows from the assumptions of the theorem and Lemma 3.3.2
that the natural map

(G(Q)\ (X× G(Af ))→ (H(Q)\ (Y × H(Af )))Γ

is a bijection. To show that the natural map[
(G(Q)\ (X× G(Af ))) /KΓ

]
→ [(H(Q)\ (Y × H(Af ))) /K]hΓ(3.5.2)

is an equivalence, it suffices by Corollary A.2.13 to show that H1(Γ,K) = {1}, which is true
by assumption. Therefore, the map in equation (3.5.2) is an equivalence and the theorem
now follows from Lemma 3.5.3. □

The following corollary is a direct consequence of the proof of Theorem 3.5.1.

Corollary 3.5.4. If K ⊂ H(Af ) is a Γ-stable subgroup (not necessarily compact open!) with
H1(Γ,K) = {1}, then the natural map[

G(Q)\
(
X× G(Af )/KΓ

)]
→ [H(Q)\ (Y × H(Af )/K)]hΓ

is an equivalence. In particular, the right-hand side is equivalent to a discrete groupoid if
(G,X) satisfies SV5 and K is neat.

3.6. Shimura varieties of Hodge type. Let the notation be as in the beginning of Section
3. For a symplectic space (V, ψ) over Q we write GV := GSp(V, ψ) for the group of symplectic
similitudes of V over Q. It admits a Shimura datum HV consisting of the union of the Siegel
upper and lower half spaces. Assume furthermore that (G,X) is of Hodge type and let
ι : (G,X)→ (GV ,HV ) be a closed immersion of Shimura data. Let F be a Galois totally real
field with Galois group Γ.

Recall the following construction from [18, Section 7.1.6]4. Let W be the symplectic space
V ⊗Q F considered as a vector space over Q, equipped with the symplectic form ψW given
by

W ×W F Q.
ψ⊗QF TrF/Q

4They use H′ for what we call H and they use H for what we call H1.
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Let cG : G → Gm be the restriction of the symplectic similitude character of GV to G and
let cG,F : H→ ResF/QGm be the induced map. Form the fiber product

H3 Gm

H ResF/QGm
cG,F

and let H1 be the neutral component of H3. Then H1 is a connected reductive group over
Q and the natural map G → H factors over H1. For h : S → GR in X we let Y1 be the
H1(R)-conjugacy class of the composition h : S→ GR → H1,R, this does not depend on the
choice of h. We will write GV,F for the inverse image of Gm ⊂ ResF/QGm under the natural
map

ResF/QGV → ResF/QGm.

As explained above, this also comes equipped with a Shimura datum HV,F. There is moreover
a commutative diagram

G H1

GV GV,F GW ,

ι
ιH1

where each map is a closed immersion compatible with the natural Shimura data.

Remark 3.6.1. The group H1 does not depend on the choice of ι, since the map cG does
not depend on the choice of ι, see [3, Lemma 7.1.1].

3.6.2. Shimura varieties of Hodge type automatically satisfy SV5 and in fact their centers
have Q-split and R-split ranks equal to 1. Recall from Lemma 3.2.2 that if [F : Q] > 1 then
(H,Y) does not satisfy SV5. Since (H1,Y1) is of Hodge type, it does satisfy SV5. The point
of the construction of H1 is both to remedy the failure of SV5 and to build something that
is again of Hodge type.

We would like to compare the Γ-fixed points of Shimura varieties for (H1,Y1) to the
Shimura varieties for (G,X). It seems complicated to do this directly, so we will instead
compare the C-points of the Γ-fixed points of the Shimura varieties for (H1,Y1), to the
Γ-homotopy fixed points of the Shimura stacks for (H,Y). We will need the following mod-
ification of [15, Lemma 2.1.2], cf. [21, Lemma 2.4.3].

Proposition 3.6.3. Let ℓ be a prime number coprime to the order of Γ. Let Kℓ ⊂ H(Aℓf )
be a neat good compact open subgroup and let Kℓ ⊂ G(Qℓ) be a Γ-stable pro-ℓ group. Define
K = KℓKℓ and define K1,ℓ = Kℓ ∩H1(Qℓ) and K1,ℓ = Kℓ ∩H1(Aℓf ). Then the natural map(

H1(Q)\Y1 × H1(Af )/Kℓ
1K1,ℓ

)Γ
→

[
H(Q)\Y × H(Af )/KℓK1,ℓ

]hΓ
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is fully faithful.5

Proof of Proposition 3.6.3. We first prove that the natural functor(
H1(Q)\Y1 × H1(Af )/Kℓ

1

)Γ
→

[
H(Q)\Y × H(Af )/Kℓ

]hΓ
is fully faithful. For this we consider the commutative diagram

H1(Q)\Y1 × H1(Af )/Kℓ
1

[
H(Q)\Y × H(Af )/Kℓ

]
H(Q)\Y × H(Af )/Kℓ.

The proof of [21, Lemma 2.4.3] establishes that the diagonal arrow is injective: Indeed, we
consider the commutative diagram

H1(Q)\Y1 × H1(Af )/Kℓ
1 H(Q)\Y × H(Af )/Kℓ

H1(Q)\H1(Qℓ) H(Q)\H(Qℓ).

The bottom arrow is injective since H(Q)∩H1(Qℓ) = H1(Q). The fibers of the vertical maps
can be identified with Y1 × H1(Aℓf )/Kℓ

1 and Y × H(Aℓf )/Kℓ, respectively, and the natural
map between them is injective since Kℓ

1 = Kℓ ∩H1(Aℓf ). We conclude that the top arrow is
injective, and it follows that the diagonal arrow in the following diagram is injective(

H1(Q)\Y1 × H1(Af )/Kℓ
1

)Γ [
H(Q)\Y × H(Af )/Kℓ

]hΓ
(
H(Q)\Y × H(Af )/Kℓ

)Γ
.

Since H1(Γ,Kℓ) = {1} by assumption, it follows from Corollary 3.5.4 that[
H(Q)\Y × H(Af )/Kℓ

]hΓ
is a discrete groupoid. Therefore

(
H1(Q)\Y1 × H1(Af )/Kℓ

1

)Γ → [
H(Q)\Y × H(Af )/Kℓ

]hΓ
must be a fully faithful map of discrete groupoids. To continue the proof we consider the
2-commutative diagram

H1(Q)\Y1 × H1(Af )/Kℓ
1

[
H(Q)\Y × H(Af )/Kℓ

]
H1(Q)\Y1 × H1(Af )/Kℓ

1K1,ℓ

[
H(Q)\Y × H(Af )/KℓK1,ℓ

]
,

5The groupoid on the right hand side is equivalent to a discrete groupoid by Corollary 3.5.4, and thus
the lemma is equivalent to saying that the map on isomorphism classes of objects is injective.
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which we note is 2-Cartesian since the vertical arrows are essentially surjective with fibers
given by the discrete groupoid associated to K1,ℓ. By Lemma A.1.11, it follows that the
diagram stays Cartesian when applying Γ-homotopy fixed points. Since Kℓ is pro-ℓ by
assumption, it follows that K1,ℓ is also pro-ℓ and thus H1(Γ,K1,ℓ) = {1} by Lemma 3.4.4.
Therefore, it follows from Corollary A.2.13 that the left vertical map in the diagram(

H1(Q)\Y1 × H1(Af )/Kℓ
1

)Γ [
H(Q)\Y × H(Af )/Kℓ

]hΓ
(
H1(Q)\Y1 × H1(Af )/Kℓ

1K1,ℓ

)Γ [
H(Q)\Y × H(Af )/KℓK1,ℓ

]
,

is (essentially) surjective, and fully faithfullness of the top row therefore implies the fully
faithfulness of the bottom row. □

Theorem 3.6.4. Let K ⊂ H(Af ) be a neat and good compact open subgroup. If there is a
prime number ℓ coprime to the order of Γ such that K = KℓKℓ with Kℓ a pro-ℓ group, and
if X1(Q,G)→X1(F, G) is injective, then the natural map

ShKΓ(G,X)→ ShK1(H1,Y1)
Γ

is an isomorphism.

Proof. As in the proof of Corollary 3.5.2, we reduce to showing that the map is a bijection
on C-points. This map has the form

G(Q)\X× G(Af )/KΓ → (H1(Q)\(Y1 × H1(Af )/K1)
Γ

and we consider the composition

G(Q)\X× G(Af )/KΓ → (H1(Q)\(Y1 × H1(Af )/K1))
Γ

→
[
H(Q)\(X× H(Af )/KℓK1,ℓ)

]hΓ
.

Let ℓ and Kℓ be as in the statement of the theorem. Since Kℓ is pro-ℓ by assumption,
it follows that K1,ℓ is also pro-ℓ and thus H1(Γ,K1,ℓ) = {1} by Lemma 3.4.4. Therefore
it follows from Corollary 3.5.4 that this composition is an equivalence of categories. By
Proposition 3.6.3, the map(

H1(Q)\Y1 × H1(Af )/Kℓ
1K1,ℓ

)Γ
→

[
H(Q)\Y × H(Af )/KℓK1,ℓ

]hΓ
is fully faithful and thus it follows that

G(Q)\X× G(Af )/KΓ → (H1(Q)\(Y1 × H1(Af )/K1))
Γ

is an equivalence, since its composition with a fully faithful map is an equivalence. Since an
equivalence of categories between discrete categories gives a bijection of the underlying sets,
we are done. □
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Remark 3.6.5. Our original approach to proving this theorem was to directly study the Γ-
fixed points of the Shimura variety for (H1,Y1) via non-abelian cohomology methods, which
proved quite difficult. This is why it is useful to consider homotopy fixed points of Shimura
stacks, even if one is just interested in studying Shimura varieties of Hodge type.

3.6.6. Finally, we collect a result for use in Section 6. For K ⊂ H(Af ) a Γ-stable compact
open subgroup we will consider KΓ ⊂ G(Af ) and K1 ⊂ H1(Af ).

Lemma 3.6.7. If X1(Q,G)→X1(Q,H) is injective, then the natural map of E-schemes

κ : lim←−
K⊂H(Af )

ShKΓ(G,X)→

 lim←−
K⊂H(Af )

ShK1(H1,Y1)

Γ

,

where the limit runs over Γ-stable compact open subgroups, is an isomorphism.

Proof. It suffices to prove this after basechanging to C. To prove it is an isomorphism over C,
we first show it induces a bijection on C-points. There we are looking at the map (injective
by [6, Variante 1.15.1])

G(Q)\X× G(Af )→ (H1(Q)\Y1 × H1(Af ))Γ .

As before we consider the composition

G(Q)\X× G(Af )→ (H1(Q)\Y1 × H1(Af ))Γ → (H(Q)\Y × H(Af ))Γ ,

which is an isomorphism by Lemma 3.3.2. It now suffices to show that

(H1(Q)\Y1 × H1(Af ))Γ → (H(Q)\Y × H(Af ))Γ

is injective, which can be checked before taking Γ-fixed points. But then the result is well
known, see [6, Variante 1.15.1].

To deduce that κ is an isomorphism, we argue as follows: It follows from the proof
of [6, Proposition 1.15] that κ is a closed immersion, thus it suffices to show the map is
surjective on topological spaces. Both the source and target are Jacobson schemes since
they are integral over the bottom object of the inverse limit, which is Jacobson; thus C-
points are dense in the source and target. Furthermore, the map κ is integral since it is
an inverse limit of integral maps of schemes. Therefore κ is universally closed, and thus
surjective since the image is closed and contains the dense set of C-points. □

4. Integral models of Shimura varieties

In this section we prove some results about integral models of Shimura varieties of Hodge
type that we will need, in particular some Γ-equivariance properties for the integral models
for (H1,Y1). In Section 4.1 we prove that the formation of shtukas on Shimura varieties is
functorial in (G,X,G) in a two-categorical manner, which we use to deduce Γ-equivariance
in the two-categorical sense. This is transferred to shtukas on integral models in Section 4.
In Section 4.3, we prove that certain Γ-equivariant morphisms of Shimura varieties can be
upgraded to Γ-equivariant morphisms of the corresponding local model diagrams.
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4.1. Shtukas on Shimura varieties. Let (G,X) be a Shimura datum with reflex field E
satisfying Milne’s axiom SV5 from [24, p. 64]. Fix a prime p and write G = G⊗Qp. Fix a
prime v of E above p and let E be the v-adic completion of E with ring of integers OE and
residue field kE . Let µ be the G(Qp)-conjugacy class of cocharacters of G coming from the
Hodge cocharacter of some x ∈ X and the choice of place v.

Let G be a parahoric model of G over Zp and set G(Zp) := Kp ⊂ G(Qp). For Kp ⊂ G(Af )
a neat compact open subgroup we write K = KpKp and consider the Shimura variety
ShK(G,X) over E. The group G(Apf ) acts on the inverse limit

ShKp(G,X) := lim←−
Kp

ShKpKp(G,X).

If it is clear from context, we will omit (G,X) from the notation. By [25, Proposition 4.1.2],
there are morphisms

ShK(G,X)♢ → ShtG,µ⊗SpdOE
SpdE

that are compatible with changing Kp. The goal of this section is to investigate the functo-
riality of this construction in the triple (G,X,G).

4.1.1. Consider the category ShTrp whose objects are triples (G,X,G), where (G,X) is a
Shimura datum satisfying SV5 and where G is a parahoric model of G. Morphisms in
ShTrp are morphisms (G,X) → (G′,X′) that extend (necessarily uniquely) to G → G′. For
(G,X,G) ∈ ShTrp, we will write Kp = G(Zp). If we fix an isomorphism C → Qp, then
the reflex field E of each Shimura datum has a natural embedding E → C → Qp with
completion E. For L ⊂ Qp a finite extension of Qp, we will write ShTrpL ⊂ ShTrp for
the full subcategory of triples such that the reflex field is contained in L. There is a strict
functor

Sh : ShTrpL → DL
(G,X,G) 7→ ShKp(G,X)

♢
L,

and similarly a strict functor sending

Sh∞ : (G,X,G) 7→ lim←−
Up

ShUp(G,X)
♢
L.

We also get a strict functor sending (G,X,G) 7→ Kp and thus a weak functor B sending
(G,X,G) 7→ BKp, see Section A.2.6. The natural map

lim←−
Up

ShUp(G,X)
♢ → ShKp(G,X)

♢

is a Kp-torsor and corresponds to a weak natural transformation (see Lemma A.2.3)

Sh→ B.
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4.1.2. There is a natural functor ShTrpL → ShtPrL sending (G,X,G) 7→ (G, µ), where µ
is the G(Qp)-conjugacy class of cocharacters of G corresponding to our fixed isomorphism
C → Qp. Thus we can think of Sht : ShtPrL → DL as a weak functor on ShTrpL. We let
(BKp)

dR denote the sub (pre-)stack of (BKp) consisting of Kp-torsors that are de-Rham in
the sense of [25, Definition 2.6.1].

Lemma 4.1.3. The morphism ShKp(G,X)
♢
L → BKp factors through (BKp)

dR ⊂ (BKp).

Proof. This follows from the main results of [20], as explained in the proof of [25, Proposition
4.1.2]. □

Proposition 4.1.4. There is a weak natural transformation Sh→ Sht factoring on objects
through ShtG,µ,L, which recovers the construction of [25, Section 2.6] for each triple (G,X,G).

Proof. We are going to chain together a number of weak functors below. In the rest of this
proof we let S = ShKp(G,X)

♢
L.

There is a functor from (BKp)(S) to the groupoid of exact tensor functors RepZp
G →

{Zp local systems on S}, see [25, Section 2.6.2]. It is given by sending a Kp-torsor P → S

to the tensor functor sending a representation ρ : G → GL(Λ), where Λ is a finite free
Zp-module, to the Zp-local system

P ×ρ Λ.

This is weakly functorial in f : G → G′ by using the identifications(
P ×f G′

)
×ρ′ Λ→ P ×ρ Λ

of Section A.2. Here ρ′ : G′ → GL(Λ) is a representation whose composition with f gives
the representation ρ of G. Per definition of de-Rham local systems, this equivalence identifies
(BKp)

dR(S) with the groupoid of exact tensor functors RepZp
G → {Zp de-Rham local systems on S}.

Pappas and Rapoport construct in [25, Proposition 2.6.3, Definition 2.6.4] an equivalence
of categories

{Zp de-Rham local systems on S} → {Shtukas on S}

compatible with tensor products. Composing with this equivalence gives us a functor from
the groupoid of exact tensor functors

RepZp
G → {Zp de-Rham local systems on S}

to the groupoid of exact tensor functors RepZp
G → {Shtukas on S}, which is weakly func-

torial in f : G → G′.
Last, we claim that there is an equivalence of categories between the groupoid of exact

tensor functors RepZp
G → {shtukas over S} to ShtG(S), which is weakly functorial in G →

G′. The equivalence is explained in [11, Section 5.1.1], and the weak functoriality can be
proved in the same way as in the first paragraph of this proof. □
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4.2. The Pappas–Rapoport axioms. Before we can state the Pappas–Rapoport axioms
we introduce some notation. Given a formal scheme X → Spf Z̆p that is formally locally of
finite type, and a closed point x ∈ X (Fp), we denote by X̂/x, the formal neighborhood of
X at x. There is a similar construction for certain v-sheaves over Spd Z̆p, see [25, Section
3.3.1]. We will only use this for the tautological point x0 ∈Mint

G,b,µ(SpdFp).

Pappas and Rapoport conjecture, see [25, Conjecture 4.2.2], that there are flat normal
integral models SK(G,X)→ SpecOE of ShK(G,X) for sufficiently small Kp, together with
forgetful maps SK′pKp(G,X) → SK over SpecOE extending the ones on the generic fiber,
such that:

a) The forgetful morphisms are finite étale and G(Apf ) acts on the inverse limit

SKp(G,X) := lim←−
Kp

SKpKp(G,X).

Moreover, for every discrete valuation ring R over OE with characteristic (0, p) the
natural map

SKp(G,X)(R)→ ShKp(G,X)(R[1/p])

is a bijection.
b) For all sufficiently small Kp the map ShK(G,X)♢ → ShtG,µ⊗SpdOE

SpdE extends
to a map

SK(G,X)♢/ → ShtG,µ .(4.2.1)

c) For all sufficiently small Kp and every x ∈ SK(G,X)(Fp) with induced bx : SpdFp →
ShtG,µ(Fp), there is an isomorphism

Θx :Mint
G,bx,µ,/x0 →

(
ŜK,/x

)♢
,

such that: The pullback under Θx of the G-shtuka over S
♢/
K coming from (4.2.1), is

isomorphic to the tautological G-shtuka overMint
G,bx,µ,/x0 .

4.2.1. We will refer to integral models satisfying their conjecture as integral models satis-
fying the Pappas–Rapoport axioms or as integral canonical models. Pappas and Rapoport
prove, see [25, Theorem 4.2.4], that such integral models are unique if they exist. These
integral models are moreover functorial in the triple (G,X,G), see [4, Corollary 4.1.10]. By
[4, Theorem I], integral models satisfying their conjecture exist if (G,X) is of Hodge type.

Let us denote by ShTrpL,SV5,PR the category of triples (G,X,G) such that E → C → Qp

factors through L, such that (G,X) satisfies SV5 and such that [25, Conjecture 4.2.2] holds
for (G,X,G). Then as explained above, there is a strict functor S ♢/ : ShTrpL,SV5,PR → D◦

OL

sending (G,X,G) to SKp(G,X)
♢/
OL

. We can now state an important corollary to Proposition
4.1.4.
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Corollary 4.2.2. There is a weak natural transformation S → Sht of weak functors
ShTrpL,SV5,PR → D◦

OL
, with underlying 1-morphisms the morphisms

S
♢/
Kp

(G,X)→ ShtG,µ

guaranteed to exist by axiom b).

Proof. Restricting to the generic fiber gives a fully faithful functor

Hom(SKp(G,X)
♢/, ShtG,µ)→ Hom(ShKp(G,X)

♢, ShtG,µ),

by [25, Corollary 2.7.10]. To turn the collection of 1-morphisms specified in the lemma
into a weak functor, we have to specify certain coherence isomorphisms satisfying certain
properties, see Definition A.1.1. By the fully faithfulness, it suffices to do this on the generic
fiber, where the result is Proposition 4.1.4. □

4.2.3. Now we prove some uniqueness results for the maps in axiom c).

Lemma 4.2.4. Let R be a complete Noetherian local Z̆p-algebra equipped with a morphism of
Z̆p-algebras x : R→ Fp and let (Spf R)♢ → ShtG,µ be a morphism. Let bx : SpdFp → ShtG,µ
be the G-shtuka over SpdFp induced by x. Then there is a unique morphism

Ψbx : (Spf R)♢ →Mint
G,bx,µ,/x0

such that SpdFp → (Spf R)♢
β−→→Mint

G,bx,µ,/x0 ShtG,µ is equal to bx.

Proof. The uniqueness is a direct consequence of [25, Proposition 4.2.5], and the existence
is [25, Proposition 4.7.1]. □

Corollary 4.2.5. Let SK = SK(G,X) be an integral model satisfying axioms a),b),c) above
and let x ∈ SK(Fp). Let bx : SpdFp → ShtG,µ denote the induced G-shtuka over SpdFp.
Then the map (

ŜK,/x

)♢
→Mint

G,b′,µ,/x0

of Lemma 4.2.4 is an isomorphism

Proof. This is a straightforward consequence of axiom c) and the uniqueness proved in
Lemma 4.2.4. □

4.3. Local model diagrams. The purpose of this section is to discuss local model diagrams
for the integral models of Shimura varieties constructed by Kisin–Zhou. In particular, we
want to show that these local model diagrams are Γ-equivariant.
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4.3.1. Let (G,X) be a Shimura datum of Hodge type with reflex field E, let p > 2 be a
prime such that p is coprime to the order of π1(Gder) and let G = G⊗Qp as usual.

Hypothesis 4.3.2. Either G splits over a tamely ramified extension, or there is a Hodge
embedding ι : (G,X) → (GV ,HV ) such that the identity component GSp of (G,X) ∩ SpV is
isomorphic to

s∏
i=1

ResKi/QHSp
i ,

where K1, · · · ,Ks are totally real fields and where HSp
i is a connected reductive group over

Ki whose base change to each p-adic place of Ki is tamely ramified.

4.3.3. Let G := Gx be the stabilizer Bruhat–Tits group scheme (also called stabilizer quasi-
parahoric, see [26, Section 2.2]) associated to a point x in the Bruhat–Tits building of G.
Let v be a place of E above p and let E be the v-adic completion of E.

Assume that Hypothesis 4.3.2 holds and let ι be the Hodge embedding guaranteed to
exist by that hypothesis. After possibly replacing ι by another Hodge embedding and (V, ψ)
by another symplectic space over Q, we may assume that: The Hodge embedding ι is good
for (G,X,G) with respect to some lattice Λ ⊂ V ⊗ Qp in the sense of [18, Section 5.1.2],
and (G,X) satisfies Hypothesis 4.3.2. Indeed, this follows from [18, Lemma 5.1.3], noting
that the new Hodge embedding ι′ constructed from ι in the proof of [18, Proposition 3.3.18]
still satisfies the condition above in terms of GSP. Then G embeds into the parahoric group
scheme GV of GV that is the stabilizer of the lattice Λ.

4.3.4. Let F be a Galois totally real field extension of Q unramified at p, let Γ be its Galois
group and let F = F⊗Qp. Let (G,X)→ (H1,Y1)→ (H,Y) and ιH1 : (H1,Y1)→ (GW ,HW )
be as in Section 3.6, where we recall that W = V ⊗Q F. Let H1 denote the Bruhat–
Tits stabilizer group scheme associated to the image of x under the morphism of buildings
B(G,Qp) → B(H1,Qp), and let H = ResOF /Zp

GOF
be the Bruhat–Tits stabilizer scheme

associated to the image of x in B(H,Qp).
Recall from [18, Section 2.4.8] that there is a natural map β : H1 → H.

Lemma 4.3.5. If Hypothesis 4.3.2 holds, then the natural map H1 → H is a closed immer-
sion.

Proof. By [18, Proposition 2.4.9], it suffices to show that the centraliser T1 of a maximal Q̆p-
split torus in H1 is an R-smooth torus (in the sense of [18, Section 5.1.2]). This is automatic
when G is tamely ramified, see [18, Proposition 2.4.6]. Otherwise, we observe that

HSp
1 = ResF/Q

(
ResKi/QHSp

i

)
F

and this implies as in the proof of [18, Proposition 5.2.6] that T1 is R-smooth. □
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4.3.6. We recall the following commutative diagram of closed embeddings of Shimura data
from Section 3.6

(G,X) (H1,Y1)

(GV ,HV ) (GV,F,HV,F) (GW ,HW ).

ι
ιH1

Let GW be the parahoric group scheme of GW that is the stabilizer of the lattice ΛW =
Λ⊗Zp OF and let GLW be the reductive integral model of GLW corresponding to ΛW . We
will also consider the parahoric model GV,F of GV,F corresponding to Λ⊗OF =: ΛF (thought
of as an OF -module). We will write Mp,F = GV,F (Zp) and Mp,W = GW (Zp).

Lemma 4.3.7. The morphism ιH1 is a good Hodge embedding with respect to the lattice
ΛW = Λ⊗Zp OF ⊂W ⊗Qp.

Proof. We need to check that the morphism ιH1 satisfies the following three properties
(i) ιH1(H1) contains the scalars.
(ii) ιH1 extends to a closed immersion ιH1 : H1 → GLW .
(iii) The natural map of local models MH1,µ → MGLW ,µ induced by H1 → GLW is a

closed immersion.6

We know that ιH1(H1) contains the scalars because ι(G) contains the scalars of GV and the
image of the natural map GV,F → GW contains the scalars. Property (ii) is a consequence
of Lemma 4.3.5 together with the fact that H → GLW is a closed immersion because it
is the restriction of scalars along SpecOF → SpecZp of (the base change to OF of) the
closed immersion G → GLV . Property (iii) follows because under our assumptions we have
functorial isomorphism (see Lemma 2.4.3)

MGLW ,µ ⊗OF ≃
d∏
i=1

MGLV ,µ ⊗OF

MH1,µ ⊗OF ≃MH,µ ⊗OF ≃
d∏
i=1

MG,µ ⊗OF

and property (iii) holds for ι : G → GV by assumption. □

4.3.8. We let Kp = H(Zp) which gives Kp,1 = H1(Zp) and KΓ
p = G(Zp). We recall the

construction of SKp,1(H1,Y1) and SKΓ
p
(G,X) from [18, Section 5.1.4], and note that they

come with natural maps

ι : SKΓ
p
(G,X)→ SMp(GV ,HV )

ιH1 : SKp,1(H1,Y1)→ SMp,W
(GW ,HW ),

6This condition is equivalent to condition (3) of [18, Definition 3.3.15] because there is a unique map
extending the natural map on the generic fiber. Moreover, the local models used by [18] agree with ours be-
cause theirs also satisfy the Scholze–Weinstein conjecture (which means that they have the correct associated
v-sheaf), see [18, Proposition 3.3.10].
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where Mp = GV (Zp) and Mp,W = GW (Zp). The targets of these morphisms have a moduli
interpretation in terms of (weakly) polarized abelian schemes (A, λ) up to prime-to-p isogeny
with prime-to-p level structures. By [18, Proposition 5.2.2], the OE scheme SKΓ

p
(G,X) fits

in a local model diagram

S̃KΓ
p
(G,X)

π

$$
q

xx

SKΓ
p
(G,X) MG,µ,

where q is a G-torsor and π is pro-smooth of relative dimension dimG. We have a similar
local model diagram for SKp,1(H1,Y1) given by

S̃Kp,1(H1,Y1)

π1

&&
q1

vv

SKp,1(H1,Y1) MH,µ,

where q1 is an H1-torsor and π1 is pro-smooth of relative dimension dimH1.

Remark 4.3.9. The map π has an entirely classical description over the generic fiber, see
[14, Proposition 4.2.26]. The torsor of trivializations of the first de-Rham cohomology of
the universal abelian variety over SMp(GV ,HV ) has a natural reduction to a G-bundle VdR.
The morphism π is given by assigning to a trivialization ϕ of the first de-Rham cohomology,
the pre-image ϕ−1(F1) of the nontrivial step of the Hodge filtration.

4.3.10. We require the following results on the local model diagram.

Proposition 4.3.11. (1) There exists a Γ-action on S̃Kp,1(H1,Y1) extending that on
SKp,1(H1,Y1), which fits in a commutative diagram

S̃Kp,1(H1,Y1) S̃Mp,F
(GV,F,HV,F)

SKp,1(H1,Y1) SMp,F
(GV,F,HV,F) MH,µ MGV,F ,µ,

q1

ι̃H1

πF,V

qF,V
ιH1

π1

ιH1,p

and a Γ-action on S̃Mp,F
(GV,F,HV,F) such that π1, πF,V , q1, qF,V , ιH1,p, ιH1 are Γ-

equivariant.

Proof. To prove the Proposition it suffices to consider the case (G,X) = (GV ,HV ), whence
(H1,Y1) = (GV,F,HV,F). Indeed, we already know that the Γ-action on ShK′

1
(H1,Y1) ex-

tends to SK′
1
(H1,Y1) by [4, Corollary 4.1.10]. Thus we are only trying to show that the

action extends to the H1-torsor, and this admits a closed immersion into the pullback of
S̃Mp,F

(GV,F,HV,F)→ SMp,F
(GV,F,HV,F) along the Γ-equivariant natural map ιH1 . Moreover,
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the Γ-equivariance of the induced maps can be checked on the generic fiber and then over
C, where it is clear from uniformization.

We may also assume that Λ ⊂ V is a self-dual Zp-lattice whence we may assume the same
for ΛW ⊂ VF . To define the action of Γ on the torsor S̃Mp,F

(GV,F,HV,F) we may make use of
the moduli problem associated to this torsor. Recall that SMp,F

(GV,F,HV,F) classifies, over
S a Zp-scheme, tuples (A, λ, i, η) where:

(1) h : A → S is an abelian scheme of dimension [F : Q] · dim(V )/2 considered up to
prime-to-p isogeny.

(2) λ is a Z×
(p)-multiple of a principal polarization.

(3) i : OF,(p) → EndS(A) is a map of rings such that the Rosati involution associated to
λ induces the identity on OF and such that i satisfies a determinant condition as in
[19, Section 5].

(4) η is a trivialization η : V p(A)
∼−→ VF ⊗ Apf compatible with the OF,(p)-action and

with the polarization up to a scalar in Ap,×f .

The scheme S̃Mp,F
(GV,F,HV,F) classifies quintuples (A, λ, i, η, τ) where (A, λ, i, η) are as

above and τ : Λ∨
F

∼−→ R1h∗Ω
∗
A/S is compatible with the symplectic pairing and OF actions on

the source and target. The Γ-action on the moduli problem S̃Mp,F
(GV,F,HV,F) sends a tuple

(A, λ, i, η, τ) to the tuple (A, λ, i⊗OF,(p),γ
−1 OF,(p), η, γ(τ)), here τ : Λ∨

F ⊗OS
∼−→ R1h∗Ω

∗
A/S

and we define γ(τ) to be the composition τ ◦ (ιγ ⊗OS) where ιγ : Λ∨
F ⊗OF,(p),γ

−1 OF
∼−→ Λ∨

F

is the natural isomorphism arising from the trivial descent datum on ΛV,F
∼−→ Λ ⊗ OF .

By definition, this lifts the Γ action on the moduli problem SMp,F
(GV,F,HV,F). One is left

to check that the map πF,V is Γ-equivariant, and that this moduli interpretation for the
Γ action agrees with the naive description of the Γ-action on the Hilbert–Siegel modular
varieties we consider by uniformization. We check the former, the latter is left to the reader.
By flatness and normality of S̃Mp,F

(GV,F,HV,F) and its local model it suffices to check this
over the generic fiber, but here we see that

πF,V,Qp(γ(A, λ, i, η, τ)) = ι−1
γ τ−1(F1(R1h∗Ω

∗
A/S))

which was exactly our definition of the Γ-action on the local model MGV,F ,µ,Qp , see Remark
4.3.9. □

4.3.12. Finally, we state a Proposition which will be used in the proof of part (3) of Theorem
1. The assumption that H is hyperspecial can probably be relaxed with some effort; this
assumption is however present for different reasons in part (3) of Theorem 1.

Proposition 4.3.13. Assume that H is the parahoric group scheme associated to a hyper-
special vertex in the Bruhat-Tits building of H. Let x : SpecFp → SK1(H1,Y1) be a point
which in the image of the inclusion S (G,X)→ S (H1,Y1). Then there exists a Γ-fixed point
y : SpecFp →MH,µ and a Γ-equivariant isomorphism of tangent spaces

Θ : Tx(SK1(H1,Y1))→ Ty(MH,µ).
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Proof. We actually prove slightly more. We will borrow freely the notation of Proposition
4.3.11. Let x be as above and let Rx denote the complete local ring of S (H1,Y1) at x. We
let Sx denote the versal deformation ring of the p-divisible group with OF -action living over
the point x. By the argument of [15, Proposition 2.3.5], the natural morphism Sx → Rx
factors through a surjection onto the complete local ring of some point y ∈MH1,µ, we denote
this ring by Sy. Let x′ denote ιH1(x), let y′ = ιH1,p(y) and let R′

x′ , S
′
y′ the complete local

rings of SMp,F
(GV,F,HV,F), MGV,F ,µ at these points. By construction of the map Sx → Rx

and by the results of Proposition 4.3.11, one has a commutative diagram of morphisms of
local rings

Sy Rx

S′
y′ R′

x′

where the vertical arrows are surjections (for the right hand vertical arrow, this follows from
on [38, Theorem 1.1.1]), and all maps are Γ-equivariant. Since the maps on Zariski tangent
spaces induced by the vertical arrows are injective, it thus suffices to deduce Γ-equivariance
of the lower horizontal arrow, so we are reduced to the Hilbert–Siegel case.

Let R̄′
x′ , S̄′

y′ denote the special fiber of the deformation rings R′
x′ , S

′
y′ respectively. The

induced map S̄′
y′/m

p
y′ → R̄′

x′/m
p
x′ has an explicit moduli theoretic interpretation in terms

of Grothendieck–Messing’s crystalline deformation theory. We let A denote the universal
polarized abelian scheme with OF -action over Spec(R̄′

x′), and let A0 denote its fiber over the
point Spec(Fp) = Spec(R̄′

x′/mx′) in what follows. The ring map R̄x′/m
p
x′ → Fp = R̄′

x′/mx′

admits a set of trivial nilpotent divided powers, whence one has a canonical identifica-
tion of polarized OF -modules (via the Gauss–Manin connection) H1

dR(A/(R̄′
x′/m

p
x′))

∼−→
H1

dR(A0/Fp) ⊗Fp
R̄′

x′/m
p
x′ , and one has a canonical identification H1

cris(A0/(R̄′
x′/m

p
x′))

∼−→
H1

dR(A/(R̄′
x′/m

p
x′)), and finally one has the identification H1

cris(A0/(R̄′
x′/m

p
x′)) ⊗ Fp =

H1
dR(A/Fp). Because x′ is in the image of S (G,X), we may fix an OF -equivariant triv-

ialization of H1
dR(A0/Fp)

∼−→ Λ∨
F ⊗Zp Fp compatible with the standard symplectic pairing

on Λ∨
F and the polarization on H1

dR(A0/Fp), the Γ action, and such that the image of the
Hodge filtration under this trivialization defines the point y′ on MH1,µ. Now by the re-
sult [22, Theorem V.1.10] the image of the Hodge filtration F 0H1

dR(A/(R̄′
x′/m

p
x′)) inside

of H1
cris(A0/(R̄′

x′/m
p
x′)) ≃ (Λ∨

F ⊗Zp Fp) ⊗Fp
(R̄′

x′/m
p
x′) gives the isomorphism S̄′

y′/m
p
y′ →

R̄′
x′/m

p
x′ .

Now the action of Γ on the source takes the abelian scheme A to γ∗A. On the other
hand as A0 arises from an abelian variety A′

0 such that A0 = A′
0⊗OF and thus there exists

a canonical isomorphism H1
cris(A0/(R̄′

x′/m
p
x′))

∼−→ H1
cris(A′

0/(R̄
′
x′/m

p
x′)) ⊗ OF compatible

with the OF action and polarization, as well as the Γ action. There is a canonical isomor-
phism γ∗H1

dR(A/(R̄′
x′/m

p
x′))

∼−→ H1
dR(γ

∗A/(R̄′
x′/m

p
x′)) of polarized OF -modules. Finally
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the desired Γ-equivariance follows from scrutinizing the commutative diagram

γ∗H1
dR(A/(R̄′

x′/m
p
x′)) H1

dR(γ
∗A/(R̄′

x′/m
p
x′)) H1

dR(A/(R̄′
x′/m

p
x′))

γ∗H1
cris(A0/(R̄′

x′/m
p
x′)) H1

cris(γ
∗A0/(R̄′

x′/m
p
x′)) H1

cris(A0/(R̄′
x′/m

p
x′))

γ∗(Λ∨
F ⊗Zp Fp)⊗Fp

(R̄′
x′/m

p
x′) (Λ∨

F ⊗Zp Fp ⊗Fp
(R̄′

x′/m
p
x′).

H1
cris(ψ

−1
γ )

□

Remark 4.3.14. We had originally hoped to prove the Γ-equivariance in Proposition 4.3.11
using the Γ-equivariance of shtukas and the interpretation of the local model diagram in
terms of shtukas, see [25, Section 4.9.1]. This does not seem to be possible however, since the
scheme-theoretic local model diagram is not uniquely pinned down by the v-sheaf theoretic
local model diagram, as discussed in [25, Section 4.9.1].

5. Fixed points of integral models of Shimura varieties

In this section we prove Theorem 1 from the introduction.

5.1. Fixed points of integral models of Shimura varieties of Hodge type. Let (G,X)
be a Shimura datum of Hodge type, let F be a totally real Galois extension of Q with Galois
group Γ. Let (G,X) → (H1,Y1) → (H,Y) be as in Section 3.6. We let G◦ be a parahoric
model of G that is the identity component of a Bruhat–Tits stabilizer group scheme G
corresponding to some point x in the Bruhat–Tits building of G(Qp). We let H◦ ⊂ H be
the corresponding objects for H, and we let Kp = H(Zp) and K◦

p = H◦(Zp). We let H1 be
the Bruhat–Tits stabilizer group scheme for H1 and we let H′

1 ⊂ H1 be the inverse image
of H◦ ⊂ H. We let Gad be the Bruhat–Tits stabilizer group scheme corresponding to the
image of x in the building of Gad, and similarly we define Had. We also need the parahoric
group schemes Gad,◦ and Had,◦, and we observe that

Had ≃ ResOF /Zp
GadOF

, Had,◦ ≃ ResOF /Zp
Gad,◦OF

.

We set K1,p = H1(Zp) = Kp ∩H1(Qp) and K ′
1,p = H1(Zp) = K ′

p ∩H1(Qp). We also have
KΓ
p = G(Zp) and K◦,Γ

p = G(Zp). In what follows we let Kp ⊂ H(Apf ) denote a neat good
compact open subgroup such that there is a prime number ℓ ̸= p coprime to the order of
Γ such that Kp = Kp,ℓKℓ with Kℓ a pro-ℓ group. For such Kp we have K1,K

′
1,K

Γ,K◦,Γ

defined in the obvious way using Kp
1 and Kp,Γ. Unfortunately, the notation just introduced

conflicts with that of the introduction, but we will need the Bruhat–Tits stabilizer group
schemes in the proof of part (2) of Theorem 5.1.2 below.

Note that if F is tamely ramified over Q, then such Kp form a cofinal collection of compact
open subgroups by Proposition 3.4.7.
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5.1.1. By [4, Theorem 4.2.3] there is an integral model SK′
1
(G,X) equipped with a shtuka

(in the sense of [4, Section 3.1.2], since H′
1 is a quasi-parahoric integral model of G)

SK′
1
(H1,Y1)

♢/ → ShtH1,µ .

We note that these integral models agree, by construction, with the ones of [18] that we
used in Section 4.3. We have similar integral models for K,K◦,K1,K

′
1,K

Γ,K◦,Γ.

Theorem 5.1.2. Assume that p is unramified in F, that p > 2 and that X1(Q,G) →
X1(F, G).

(1) The natural map

SK◦,Γ(G,X)→ SK′
1
(H1,Y1)

Γ.(5.1.1)

is a universal homeomorphism.
(2) If p is coprime to |Γ|·|π1(Gder)| and (G,X) satisfies Hypothesis 4.3.2, then the natural

map of (5.1.1) is an isomorphism.
(3) If Kp is hyperspecial, then the natural map of (5.1.1) is an isomorphism.

Proof. Part (1): We first observe that the natural map H′
1 → Had factors through Had,◦

because H′
1 → Had factors through H, and H′

1 maps to H◦. Now consider the corresponding
map SK′

1
(H1,Y1)

♢/ → ShtH′
1,µ
→ ShtHad,◦,µ; we claim that it is Γ-equivariant in the 2-

categorical sense.7 It suffices to prove this on the generic fiber as in the proof of Corollary
4.2.2. But then the map factors through a Γ-equivariant map to Shimura varieties for
(Gad,Xad), and we may apply 4.1.4 to (Gad,Xad) to conclude. It thus follows from Lemma
2.6.6, using the fact that p is unramified in F, that there is an isomorphism

ShtGad,◦,µ →
(
ShtHad,◦,µ

)hΓ
.

This induces a map

SK′
1
(H1,Y1)

♢/,Γ → ShtGad,◦,µ,

compatible with the maps SK◦,Γ(G,X)♢/ → ShtG◦,µ → ShtGad,◦,µ and SK◦,Γ(G,X)♢/ →
SK′

1
(H1,Y1)

♢/,Γ. For x ∈ SK′
1
(H1,Y1)

Γ(Fp) we let bx : SpdFp → ShtGad,◦,µ be the corre-
sponding Gad,◦-shtuka. Then by Lemma 4.2.4, there is a morphism

Ψbx :
(
ŜK′

1
(H1,Y1)

Γ
)♢

/x
→Mint

Gad,◦,bx,µ,/x0
,

and an isomorphism from the pullback under Ψbx of the tautological Gad,◦-shtuka onMint
Gad,◦,bx,µ,/x0

to the universal Gad,◦-shtuka pulled back from SK′
1
(H1,Y1)

Γ,♢/. If we let dx denote the in-
duced map SpdFp → ShtHad,◦,µ, then by the uniqueness proved in Lemma 4.2.4, there is a

7The functoriality of the map SK′
1
(H1,Y1)

♢/ → ShtH′
1,µ

does not strictly speaking follow from Corollary
4.2.2 since H′

1 is not necessarily a parahoric group scheme, but only a quasi-parahoric scheme.
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commutative diagram (
ŜK′

1
(H1,Y1)

Γ
)♢

/x
Mint

Gad,◦,bx,µ,/x0

(
ŜK′

1
(H1,Y1)

)♢

/x
Mint

Had,◦,bx,µ,/x0
,

Ψbx

Ψdx

where the vertical arrows are the natural closed immersions. We note that the map Ψdx is
an isomorphism by Corollary 4.2.5 and the fact that (for a lift b′x : SpdFp → ShtH′

1,µ
of bx)

Mint
H′

1,b
′
x,µ,/x0

→Mint
Had,◦,bx,µ,/x0

is an isomorphism, see [26, Theorem 5.1.2]. It is moreover a direct consequence of the
uniqueness proved in Lemma 4.2.4 that the morphism Ψdx is Γ-equivariant. Since taking
Γ-invariants commutes with taking diamond functors and formal completions, we see using
Proposition 2.6.10 that Ψbx is the Γ-fixed points of Ψdx . In particular, Ψbx is an isomorphism.

By [26, Theorem 2.5.4, Theorem 2.5.5] in combination with [9, Corollary 1.4], using our
assumption that p > 2, there is a flat normal formal scheme N such that

N ♢ ≃Mint
Gad,◦,bx,µ,/x0

.

In particular, the unique Fp-point of Mint
Gad,◦,bx,µ,/x0

(and thus of
(
ŜK′

1
(H1,Y1)

Γ
)
/x

) lifts

to a Spf L point for a finite extension L of Z̆p. Since this is true for all x, this implies
that SK′

1
(H1,Y1)

Γ is topologically flat over OE , i.e., that its generic fiber is dense. Let
SK′

1
(H1,Y1)

Γ,awn → SK′
1
(H1,Y1)

Γ be the absolute weak normalization, see [34, Lemma
0EUS]; this is a universal homeomorphism and so SK′

1
(H1,Y1)

Γ,awn is again topologically
flat over OE . Then by [1, Lemma 2.13], the natural map(

ŜK′
1
(H1,Y1)

Γ,awn
)♢

/x
→

(
ŜK′

1
(H1,Y1)

Γ
)♢

/x

is an isomorphism. By the fully faithfulness of the ♢ functor on absolute weakly normal
formal schemes flat separated and topologically of finite type over Zp, see [1, Theorem 2.16],
we find that (

ŜK′
1
(H1,Y1)

Γ,awn
)
/x
≃ N .

This implies that the complete local rings of SK′
1
(H1,Y1)

Γ,awn at Fp points are normal, and
thus that the local rings are normal by [34, Lemma 0FIZ]. This shows that SK′

1
(H1,Y1)

Γ,awn

is normal, because normality (of a quasicompact scheme) can be checked at closed points. By
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the universal property of the absolute weak normalization, the natural map SK◦,Γ(G,X)→
SK′

1
(H1,Y1)

Γ lifts to a finite map

SK◦,Γ(G,X)→ SK′
1
(H1,Y1)

Γ,awn.

This map is an isomorphism on the generic fiber by Theorem 3.6.4 and thus an isomorphism
since the target is normal and source and target are flat over Zp, see [34, Lemma 0AB1].
The theorem now follows from the fact that SK′

1
(H1,Y1)

Γ,awn → SK1(H1,Y1)
Γ is a universal

homeomorphism.

Part (2): We assume from now on that p is coprime to the order of Γ and to the order
of π1(Gder), and that (G,X,G) satisfies Assumption 4.3.2. It then follows from Proposition
4.3.11 that there is a Γ-equivariant and smooth map

SK1(H1,Y1)→
[
MHad,µ/Had

]
.

It follows from [7, Proposition 4.2], using the fact that Γ is of order prime-to-p, that the
induced map

SK1(H1,Y1)
Γ →

[
MHad,µ/Had

]hΓ
.

is also smooth. Recall that Corollary 2.4.8 tells us that the natural map[
MGad,µ/Gad

]
→

[
MHad,µ/Had

]hΓ
is an isomorphism. Thus SK1(H1,Y1)

Γ has a smooth local model diagram to MGad,µ and
is thus flat over Zp and normal since MGad,µ is, see [9, Corollary 1.4]. The natural map
SK′

1
(H1,Y1) → SK1(H1,Y1) is Γ-equivariant (by [4, Corollary 4.1.10]) and finite étale (by

the proof of [4, Theorem 4.1.12]) and thus the induced map on fixed points

SK′
1
(H1,Y1)

Γ → SK1(H1,Y1)
Γ

is also finite étale. It follows that SK′
1
(H1,Y1)

Γ is flat over Zp and normal since SK1(H1,Y1)
Γ

is. Now the natural map of the theorem is a finite morphism that induces an isomorphism
on generic fibers by Theorem 3.6.4. Since the target is flat over Zp and normal, it follows
from [34, Lemma 0AB1] that the map is an isomorphism.

Part (3): We have a diagram

SK◦,Γ(G,X)→ SK′
1
(H1,Y1)

Γ → SK′
1
(H1,Y1).

We first observe that the composite is a closed immersion by [38, Theorem 1.1.1] and the
second arrow is a closed immersion because SK′

1
(H1,Y1) is separated; it follows that the

first arrow is a closed immersion. From part (1), it moreover follows that the first arrow is a
universal homeomorphism. To show that the first map is an isomorphism, it is thus enough
to show it induces isomorphisms on complete local rings of Fp-points, see e.g. [34, Lemma
0819]. By Lemma 5.1.3 below, using the fact that K◦,Γ

p is hyperspecial, it suffices to show
that the induced map on tangent spaces at Fp-points is a bijection. Since the map is a closed
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immersion, it suffices to show that for x ∈ SK◦,Γ(G,X) the tangent space of SK◦,Γ(G,X)→
SK′

1
(H1,Y1)

Γ at x has the same dimension as the tangent space of SK′
1
(H1,Y1)

Γ at x.

We note that SK◦,Γ(G,X) is smooth, and that the tangent space at x has dimension
equal to the dimension of the tangent space of any point in MG,µ = MGad,µ. By Proposition
4.3.13, we may identify the tangent space of SK′

1
(H1,Y1)

Γ at x with the Γ-fixed point of
the tangent space of MH,µ at a Γ-fixed point y of MH,µ = MHad,µ. By Proposition 2.4.7,
we have y ∈MGad,µ, and moreover the Γ-fixed points of the tangent space gives the tangent
space of MGad,µ at y. This proves the claim about the dimensions of tangent spaces, and so
we are done by the argument in the previous paragraph. □

Lemma 5.1.3. Let f : A → B be a surjective local homomorphism of complete local Noe-
therian Z̆p-algebras with B flat, formally smooth, and unramified over Z̆p. Suppose that f
induces a universal homeomorphism on spectra. If f induces an isomorphism on residue
fields and tangent spaces, then it is an isomorphism.

Proof. The proof is no doubt well known to experts, but we were unable to find a suitable
reference. Because B is formally smooth over Z̆p we have that it is a complete local ring
of the form Z̆p[[X1, . . . , Xn]]. The map f : A → B admits a section g : B → A, which
we may construct by taking g(Xi) to be any Y ∈ A such that f(Y ) = Xi. The morphism
g is finite, as both A,B are complete and g induces an isomorphism on residue fields and
tangent spaces. Thus g ◦ f makes A a finite A algebra, and so by Nakayama’s lemma we see
that g ◦ f is a surjection, as A is Noetherian; it is thus an isomorphism. □

Remark 5.1.4. One can prove a version of Part (1) of Theorem 5.1.2 for integral models of
Shimura varieties of abelian type (G,X), using Theorem 3.5.1 as input on the generic fiber
(thus we require the assumption that the R-split rank of ZG is zero). To do this, one needs
integral models satisfying the Pappas–Rapoport axioms, see [5] for this.8 In fact, the proof
of such a theorem is easier than the proof of Theorem 5.1.2, because one can directly work
with (H,Y) instead of (H1,Y1).

Remark 5.1.5. If p is completely split in F, then the proof of part (1) of Theorem 5.1.2
can be adapted to show that the natural map is actually an isomorphism. The key point is
that if p is completely split, then one can prove a version of Lemma 2.4.3 for the integral
local Shimura varieties for Had,◦, which then implies that Proposition 2.6.10 holds on the
level of formal schemes. We leave the details to the interested reader.

6. Fixed points of Igusa stacks

In this section we discuss the fixed points of the Igusa stacks of [3]. We use this to prove
a version of Theorem 5.1.2 only assuming the injectivity of X1(Q,G) → X1(F,G), see
Theorem 6.3.1.

8In an earlier version of this paper, we proved a weaker version of these axioms for the same integral
models of Shimura varieties in order to prove a version of Theorem 5.1.2. Our weaker version involved
constructing shtukas for Gad, which is easier than constructing G-shtukas, see [5, Remark 1.1].
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6.1. Igusa stacks. Fix an isomorphism Qp → C. For L ⊂ Qp let us denote by ShTrpL,Hdg

the category whose objects are triples (G,X,G) such that E → C → Qp factors through L
and such that (G,X,G) is of Hodge type, and whose morphisms are morphisms f : (G,X)→
(G′,X′) such that f extends (necessarily uniquely) to a morphism G → G′. By [4, Theo-
rem I, Corollary 4.1.10], there is a functor S ⋄ : ShTrpL,Hdg → D◦

OL
sending (G,X,G) to

SKp(G,X)
⋄, see Section 4.2.1. Here Kp = G(Zp) and SKp(G,X)

⋄ is the diamond associ-
ated to the formal scheme ŜKp(G,X), which is the p-adic completion of the integral model
SKp(G,X).

The following result is a consequence of [3, Theorem I, Theorem VII] as we will explain
below. It was originally conjectured by Scholze.

Theorem 6.1.1. There is a functor Igs : ShTrpL,Hdg → D◦
OL

together with a natural trans-
formation S ⋄ → Igs and a weak natural transformations Igs→ Bun, and a strictly commu-
tative diagram of weak natural transformations

S ⋄ Sht

Igs Bun,

such that the resulting 2-commutative diagrams of stacks on Perf

SKp(G,X)
⋄ ShtG,µ

Igs (G,X) BunG,

are 2-Cartesian for all (G,X,G) ∈ ShTrpL,Hdg, and such that Igs (G,X) → BunG factors
through the open substack BunG,µ−1 → BunG.

Proof. The existence of Igs (G,X) is [3, Theorem VII], the existence of the strict functor
Igs and the strict natural transformation S ⋄ → Igs is [3, Theorem I]. The weak natural
transformation Igs → Bun is constructed at the end of the proof of [3, Proposition 7.1.6],
see the commutative cube in [3, Equation (7.1.4)]. By construction of the Igusa stack, the
diagram

SKp(G,X)
⋄ ShtG,µ

Igs (G,X) BunG,

is strictly commutative for all (G,X,G), and thus we see that the result follows.
□

6.2. Fixed points of Igusa stacks. Let the notation be as in Section 5.1.



ON THE PIATETSKI-SHAPIRO CONSTRUCTION 43

Theorem 6.2.1. If X1(Q,G)→X1(F, G) is injective, then the natural map

Igs (G,X)→ Igs (H1,Y1)
Γ ×BunhΓH1

BunG,µ−1

is an isomorphism.

To prove the theorem, we need to introduce potentially crystalline loci.

6.2.2. The potentially crystalline locus in Hodge type Shimura varieties. Recall that there is
an open immersion ShK(G,X)◦,an ⊂ ShK(G,X)an of rigid spaces over E called the potentially
crystalline locus, constructed in [12], see [12, Theorem 5.17]. The formation of ShK(G,X)◦,♢

is compatible with changing K, see [12, Corollary 5.29], and we will also consider

ShKp(G,X)
◦,♢ = lim←−

Kp⊂G(Ap
f )

ShKpKp(G,X)
◦,♢

Sh(G,X)◦,♢ = lim←−
K⊂G(Ap

f )

ShK(G,X)◦,♢.

Lemma 6.2.3. If (G,X) → (G′,X′) is a closed immersion of Shimura data of Hodge type,
then for K ′

p ⊂ G′(Qp) containing K ⊂ G(Qp) there are equalities of open subdiamonds

ShKp(G,X)
◦,♢ = ShK′

p
(G′,X′)◦,♢ ×ShK′

p
(G′,X′)♢ ShKp(G,X)

♢

Sh(G,X)◦,♢ = Sh(G′,X′)◦,♢ ×Sh(G′,X′)♢ Sh(G,X)♢.

Proof. This is a direct consequence of [12, Lemma 2.2], cf. [3, Lemma 5.1.6, Lemma 5.1.7].
□

The following lemma is [3, Lemma 5.1.6]

Lemma 6.2.4. There is an equality

ShK(G,X)◦,♢ = SKp(G,X)
⋄ ×SpdOE

SpdE

of open subdiamonds of ShK(G,X)♢.

Let K◦
p,1 ⊂ Kp ∩H1(Qp) be the unique parahoric subgroup, corresponding to the identity

component of H1.

Lemma 6.2.5. If X1(Q,G) → X1(F, G) is injective, then the following diagram is 2-
Cartesian

Sh
K◦,Γ

p
(G,X)◦,♢ ShK◦

p,1
(H1,Y1)

◦,Γ,♢

ShtG,µ,E
(
ShtH◦

1,µ,E

)hΓ
.
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Proof. It follows from Lemma 3.6.7 that the natural map (where the limit runs over Γ-stable
compact open subgroups of H(Apf ))

lim←−
K⊂H(Ap

f )

ShKΓ(G,X)♢ → lim←−
K⊂H(Ap

f )

ShK1(H1,Y1)
♢,Γ

is an isomorphism. We then invoke Lemma 6.2.4 to get an isomorphism

Sh(G,X)◦,♢ → Sh(H1,Y1)
◦,♢.

The map Sh(H1,Y1)
◦,♢ → ShK◦

p,1
(H1,Y1)

◦,♢ is a torsor for the sheaf of groups K◦
p,1 associ-

ated to the topological group K◦
p,1. Now we observe that there is a natural (in particular

Γ-equivariant) isomorphism

ShtH◦
1,µ,E

≃
[
GrH,µ−1 /K◦

p,1

]
,

see [39, Proposition 11.17]. Moreover, by construction, theK◦
p,1-torsor over ShK◦

p,1
(H1,Y1)

◦,♢

coming from the map

ShKp,1(H1,Y1)
◦,♢ → ShtH◦

1,µ,E
,

is given by Sh(H1,Y1)
◦,♢ → ShK◦

p,1
(H1,Y1)

◦,♢. Thus we have a Γ-equivariant 2-Cartesian
diagram

Sh(H1,Y1)
◦,♢ GrH,µ−1

Sh(H1,Y1)
◦,♢/K◦

p,1

[
GrH,µ−1 /K◦

p,1

]
,

whose homotopy fixed points are again 2-Cartesian by Lemma A.1.11. The homotopy fixed
points diagram looks like (see the proof of Proposition 2.4.7)

Sh(G,X)◦,♢ GrG,µ−1

(
Sh(H1,Y1)

◦,♢/K◦
p,1

)Γ [
GrH,µ−1 /K◦

p,1

]hΓ
.

If we base change the bottom row via BK◦,Γ
p → BK◦

p,1, then by Proposition A.2.7 we get
the Cartesian diagram

Sh(G,X)◦,♢ GrG,µ−1

Sh(G,X)◦,♢/K◦,Γ
p

[
GrG,µ−1 /K◦,Γ

p

]
.
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By Proposition A.2.7, this proves that the following diagram is Cartesian

Sh
K◦,Γ

p
(G,X)◦,♢ ShK◦

p,1
(H1,Y1)

◦,Γ,♢

[
GrG,µ−1 /K◦,Γ

p

] [
GrH,µ−1 /K◦

p,1

]hΓ
,

proving the lemma. □

Proof of Theorem 6.2.1. It follows from Theorem 6.1.1 that there is a 2-commutative square

Igs (G,X) BunG,µ−1

Igs (H1,Y1)
hΓ BunhΓH1

.

This induces a map

Igs (G,X)→ Igs (H1,Y1)
hΓ ×BunhΓH1

BunG,µ−1

which we will show is an isomorphism. By v-descent we can do this after basechanging via
the v-cover

ShtG◦,µ,E → BunG,µ−1

from [3, Corollary 6.4.2]. Using Theorem 6.1.1, Lemma 6.2.4 and Lemma A.1.11, we can
identify the basechanged map with the natural map

Sh
K◦,Γ

p
(G,X)◦,♢ → ShK◦

p,1
(H1,Y1)

◦,♢,Γ ×ShthΓH◦
1,µ,E

ShtG◦,µ,E .

This natural map is an isomorphism by Lemma 6.2.5. □

6.3. Fixed points of integral models of Shimura varieties of Hodge type II. Let
the notation be as in Section 6.2 above; the following result seems essentially optimal.

Theorem 6.3.1. If X1(Q,G) → X1(F, G) is injective, then the following diagram of v-
stacks is 2-Cartesian

S
K◦,Γ

p
(G,X)♢/ SK◦

p,1
(H1,Y1)

Γ,♢/

ShtG◦,µ ShthΓH◦
1,µ
.

Proof. If we basechange the isomorphism

Igs (G,X)→ Igs (H1,Y1)
hΓ ×BunhΓH1

BunG,µ−1
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of Theorem 6.2.1 via ShtG◦,µ → BunG,µ−1 , then by Theorem 6.1.1 we get the natural map

S
K◦,Γ

p
(G,X)⋄ → SK◦

1,p
(H1,Y1)

Γ,⋄ ×ShthΓH◦
1,µ

ShtG◦,µ,

which is therefore an isomorphism of v-sheaves. If we combine this isomorphism with Lemma
6.2.5, then we see that the natural map

S
K◦,Γ

p
(G,X)♢/ → SK◦

p,1
(H1,Y1)

Γ,♢/ ×ShthΓH◦
1,µ

ShtG◦,µ,

is an isomorphism (this follows from the definition of ♢/, see Section 2.3.3). This concludes
the proof. □

Appendix A. Some (2, 1)-category theory

A.1. Strict (2, 1)-categories and weak functors. Recall from [34, Section 02X8] the
definition of a strict (2, 1)-category. We will use Mor1(x, y) to refer to the category of 1-
morphisms between x and y in such a category, and sometimes abusively to refer to the class
of objects of this category using the same notation. We will sometimes refer to isomorphisms
in the category Mor1(x, y) as natural transformations.

Definition A.1.1. Let C be a 1-category and D a strict (2, 1)-category. We define a weak
functor F : C → D to be a pair (F , ηF ) consisting of:

(1) An assignment
F : Ob(C)→ Ob(D)

and a map F : Mor(x, y)→ Ob(Mor1(F(x),F(y))).
(2) For every x ∈ Ob(C) a 2-morphism ηF ,x : IdF(x) → F(Idx).
(3) For every composable pair f : x→ y, g : y → z in C a 2-morphism ηF ,f,g : F(g◦f)→
F(g) ◦ F(f).

Such that:

(1) For any morphism f : x→ y in C we have that

ηF ,f,Idy = ηF ,y ◦ IdF(f)

and
ηF ,Idx,f = IdF(f) ◦ ηF ,x.

(2) For any composable triple f : x→ y, g : y → z, h : z → t we have

(IdF(h) ◦ ηF ,f,g) ◦ ηF ,g◦f,h = (ηF ,g,h ◦ IdF(f)) ◦ ηF ,f,h◦g.

Definition A.1.2. A weak natural transformation ϵ : F → G of weak functors F ,G : C → D
is:

(1) A collection for x ∈ Ob(C) of ϵx : F(x)→ G(x) of 1-morphisms in D.
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(2) For each morphism f : x → y in C, a natural transformation ϵ(f) : ϵy ◦ F(f) →
G(f) ◦ ϵx in the category Mor1(F(x),G(y)), we will denote this in diagram form by

F(x) F(y)

G(x) G(y),

F(f)

ϵx ϵy
ϵ(f)

G(f)

satisfying the following conditions:
(1) We have an equality of natural transformations for every pair of morphisms f : x→

y, g : y → z:

ϵ(g ◦ f) ◦ ηF ,f,g = ηG,f,g ◦ G(g)∗(ϵ(f)) ◦ F(f)∗(ϵ(g)).

(2) For every object x ∈ Ob(C) we ask for commutativity of the diagram

ϵx

ϵx ◦ IdF(x) IdG(x) ◦ ϵx

ϵx ◦ F(Idx) G(Idx) ◦ ϵx

=

ηF,x

=

ηG,x

ϵ(Idx)

inside of the category Mor(F(x),G(x)). We note that because we work with strict
(2, 1)-categories the commutativity of this diagram is well-posed.

Let Γ be an abstract group. We define the category BΓ to be the classifying category of
the abstract group Γ (that is, the category with one object ∗ with automorphism group Γ).
Suppose D is a strict (2, 1)-category.

Definition A.1.3. A Γ-object in D is a weak functor F : BΓ → D. A Γ-equivariant
morphism is a weak natural transformation of such functors.

Let D be a strict (2, 1)-category and let x be an object of D. Then a weak functor
F : BΓ→ D sending ∗ to x is called a weak Γ-action on x.

Example A.1.4. Let D be a strict (2, 1)-category and let x be an object of D. Then the
trivial Γ-action on x is the following weak functor F : BΓ→ D: On objects it sends ∗ to x
and on morphisms it sends all morphisms to the identity x→ x. Moreover the 2-morphisms
ηF ,x and ηF ,f,g are all taken to be the identity 2-morphism.

Example A.1.5. Let D be a strict (2, 1)-category and let x be an object of D such that
Mor1(x, x) is a discrete category.9 Then Ob(Mor1(x, x)) is a group under composition of mor-
phisms and a weak Γ-action on x is the same as a group homomorphism Γ→ Ob(Mor1(x, x)).

9A discrete category is a category where the only morphisms are the identity morphisms.
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A.1.6. Recall [34, Tag 003R] that fiber products in the (2, 1)-category of categories have
the following description. Let A,B, C be (2, 1)-categories and let F : A → C,G : B → C be
functors. Then there is the following canonical presentation of the fiber product:

Definition A.1.7. The fiber product A×C B identifies with the strict (2, 1)-category whose
objects consist of triples (a, b, f) where a ∈ Ob(A), b ∈ Ob(B) and f : F(a) → G(b) is an
isomorphism in C. The morphisms ϕ : (a, b, f) → (c, d, g) consist of pairs (X,Y ) where
X : a→ c, Y : b→ d are such that the diagram

F(a) G(b)

F(c) G(d)

f

X Y

g

commutes.

Definition A.1.8. Let X be a Γ-object in the strict (2, 1)-category of categories, defined a
weak functor F . Then we define the Γ-homotopy fixed points XhΓ of X to be the following
category: The objects of XhΓ are tuples (x, {τγ}γ∈Γ), where x ∈ Ob(X) is an object and
τγ : x→ F(γ)(x) for each γ ∈ Γ is an isomorphism such that for all γ, γ′ the diagram

x F(γ′)(x)

F(γ′γ)(x) F(γ′)(F(γ)(x))

τγ′

τγ′γ F(γ′)(τγ)

ηF,γ,γ′

is commutative. A morphism f : (x, τ) → (x′, τ ′) of such objects is a morphism f : x → x′

such that the following diagram commutes for all γ ∈ Γ

x x′

F(γ)(x) F(γ)(x′).

f

τγ τ ′γ

F(f)

Lemma A.1.9. A Γ-equivariant morphism α : X → Y of Γ-objects in the strict (2, 1)-
category of categories defines a natural functor

αhΓ : XhΓ → Y hΓ.

Furthermore, this functor is an equivalence if α is an equivalence.

Proof. Let CAT be the strict (2, 1)-category of categories and suppose that X and Y are
given by weak functors F ,G : BΓ→ CAT . Then the morphism α is precisely a weak natural
transformation ϵ : F → G. In particular, for each γ ∈ Γ we have a natural transformation

X X

Y Y.

F(γ)

α α
ϵ(f)

G(γ)
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Given a tuple (x, {τγ}γ∈Γ) ∈ XhΓ we would like to define its image under αhΓ to be the
tuple (α(x), {ϵγ ◦ α(τγ)}γ∈Γ). To check that this tuple defines an object of Y hΓ, we need to
check that for γ, γ′ ∈ Γ the diagram

α(x) G(γ′)(α(x))

G(γ′γ)(α(x)) G(γ′)(G(γ)(α(x))

ϵγ′◦α(τγ′ )

ϵγ′γ◦α(τγ′γ) G(γ′)(ϵγ◦α(τγ))
ηG,γ,γ′

commutes. But this is a direct consequence of the fact that ϵ is a weak natural transforma-
tion. Thus we can define αhΓ on the level of objects by sending (x, {τγ}γ∈Γ) ∈ XhΓ to the
tuple (α(x), {ϵγ ◦ α(τγ)}γ∈Γ) ∈ Y hΓ.

Given a morphism f : (x, {τγ}γ∈Γ)→ (x′, {τ ′γ}γ∈Γ) in XhΓ, one can check that

α(f) : α(x)→ α(x′)

is a morphism in Y hΓ. The association f 7→ α(f) is compatible with compositions, since α
is a functor from X to Y . Thus we have constructed the desired functor αhΓ.

If α is fully faithful, then it is immediate that αhΓ is also fully faithful. If α is essen-
tially surjective and fully faithful, then αhΓ is also essentially surjective. Indeed, given
(y, {κγ}γ∈Γ) ∈ Y hΓ we may choose an object x ∈ X and an isomorphism ξ : α(x)→ y. For
each γ ∈ Γ there is an induced isomorphism

α(F(γ))→ G(γ)(y)

given by G(γ)(ξ)◦ϵγ . Using the fully faithfulness, the isomorphism κγ : y → G(γ)(y) induces
a unique isomorphism τγ : x→ α(x). Using this uniqueness, it is not hard to check that the
tuple (x, {τγ}γ∈Γ) defines an object in XhΓ. Its image under αhΓ is moreover isomorphic to
(y, {κγ}γ∈Γ) by construction. □

Lemma A.1.10. Let F ,G,H : C → CAT be weak functors, where C is a 1-category and
CAT is the strict (2, 1)-category of categories. Let δ : F → H, ϵ : G → H be weak natural
transformations. Then there exists a canonical weak functor F ×H G : C → CAT such that
(F ×H G)(x) = F(x)×H(x) G(x) for all x ∈ Ob(C).

Proof. Step 1: Objects. We define P := (F ×H G) on objects by sending x 7→ F(x)×H(x)

G(x). For x, y ∈ C we define

P : MorC(x, y)→ Ob
(
Mor(F(x)×H(x) G(x),F(y)×H(y) G(y)

)
to be the assignment taking g : x→ y to the functor

F(g)×H(g) G(g) : F(x)×H(x) G(x)→ F(y)×H(y) G(y)
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taking (a, b, f) ∈ F(x)×H(x) G(x) to the triple (F(g)(a),G(g)(b),P(g)(f)), where P(g)(f))
is defined as

δy(F(g)(a))

H(g)(δx(a)) H(g)(δx(b)) ϵy(G(g)(b)).

P(g)(f))
δ(g)

H(g)(f)

ϵ(g)−1

Step 2: Morphisms. A morphism p : (a, b, f)→ (a′, b′, f ′) is sent to the morphism

(F(g)(p),G(g)(p))

which one checks is a morphism in F(y) ×H(y) G(y). To check that F(g) ×H(g) G(g) is a
functor, one uses the fact that δ and ϵ are weak natural transformations (and thus have
compatibility with composition).

Step 3: Identity natural transformations. Next, for each x ∈ Ob(C) we define a
natural transformation ηx : IdP(x) → (P)(Idx) given by the morphism

ηx,(a,b,f) : (a, b, f)→ (F(Idx)(a),G(Idx)(b),P(Idx)(f))

described by (ηF ,x,a, ηG,x,a). Naturality follows from the naturality of ηF and ηG , and we must
simply check that the morphisms (ηF ,x,a, ηG,x,b) are morphisms in the category F(x)×H(x)

G(x). We recall that this comes down to showing that the top square in the following
diagram is commutative for every (a, b, f) ∈ Ob(F(x)×H(x) G(x))

(A.1.1)

δx(a) ϵx(b)

δx(F(Idx)(a)) ϵx(G(Idx)(b))

H(Idx)(δx(a)) H(Idx)(ϵx(b)).

f

δx(ηF,x,a) ϵx(ηG,x,b)

δ(Idx)

P(Idx)(f)

ϵ(Idx)

H(Idx)(f)

But we know that the bottom square is commutative by the definition of P(Idx)(f). More-
over, because δ is a weak natural transformation from F to H, we know that δ(Idx) ◦
δx(ηF ,x,a) = ηH,x ◦ δx as morphisms between δx(a) and H(Idx)(δx(a)) in the category H(x).
In addition ϵ(Idx) ◦ ϵx(ηG,x,b) = ηH,x,b ◦ ϵx as morphisms from ϵx(b) to H(Idx)(ϵx(b)). The
commutativity of the outer square of (A.1.1) follows from these last two observations. Since
we also have commutativity of the bottom diagram, the commutativity of the top diagram
follows since the vertical arrows are all isomorphisms.

Step 4: Natural transformations for compositions of morphisms. Finally, for
a pair of morphisms γ′ : x → y and γ : y → z ∈ C we define a natural transformation
ηP,γ′,γ : P(γ′ ◦ γ) → P(γ′) ◦ P(γ) of functors P(x) → P(z) which is defined on objects
(a, b, f) ∈ P(x) by

(ηF ,γ,γ′(a), ηG,γ,γ′(b)).
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Once again, the naturality is straightforward if we can check that this is an isomorphism in
P(z). For this, we consider the following diagram of isomorphisms in H(z)

H(γ′ ◦ γ)(δx(a)) H(γ′ ◦ γ)(ϵx(a))

δz(F(γ′ ◦ γ)(a)) ϵz(G(γ′ ◦ γ)(b))

δz(F(γ′)(F(γ)(a))) ϵz(G(γ′)(G(γ)(b)))

H(γ′)(δy(F(γ)(a))) H(γ′)(ϵy(G(γ)(a)))

H(γ′)(H(γ)(δx(a))) H(γ′)(H(γ)(ϵx(b))).

H(γ′◦γ)(f)

ϵ(γ′γ)−1)δ(γ′γ)

δz(ηF,γ,γ′ (a))

P(γ′◦γ)(f)

ϵz(ηG,γ,γ′ (b))

δ(γ′)

P(γ′)(P(γ)(f))

H(γ′)(P(γ)(f))

H(γ′)(δ(γ))

ϵ(γ′)−1

H(γ′)(H(γ)(f))

(H(γ′)(ϵ(γ))−1

We are asked to show that the second square from the top commutes, and we see that this
reduces to checking commutativity of the outer square in the diagram. But this again follows
from the fact that δ and ϵ are weak natural transformations.

Step 5: End of the proof. We have now specified the data required to define a weak
functor C → CAT . To check that this is a weak functor, we need to check certain identities
of natural transformations hold, see Definition A.1.1. Since all natural transformations ηP
are defined as pairs (ηF , ηG), the identities for ηP follow from those for ηF and ηG . □

We have the following key lemma. Let F ,G,H : BΓ → CAT be weak functors and let
δ : F → H, ϵ : G → H be weak natural transformations. Recall the fiber product weak
functor F ×H G from Lemma A.1.10.

Lemma A.1.11. There is an equivalence of categories

β : FhΓ(∗)×HhΓ(∗) GhΓ(∗)→ (F ×H G)(∗)hΓ.

Proof. Let us write P = F ×H G for simplicity.
Step 1: Defining the functor on objects. The functor β has the following construc-

tion on objects: Let (a, {τγ}γ∈Γ) be an object in FhΓ(∗), let (b, {σγ}γ∈Γ) be an object in
GhΓ(∗) and let f : δhΓ(a, {τγ}γ∈Γ) → ϵhΓ(b, {σγ}γ∈Γ) be an isomorphism in HhΓ(∗). Ob-
serve that f is per definition an automorphism δ(a) → ϵ(b) in H satisfying certain extra
properties.

We define β((a, {τγ}γ∈Γ), (b, {σγ}γ∈Γ), f) to be the triple (a, b, f, {ργ}γ∈Γ), where ργ is
the pair (τγ , ργ). To check that our triple defines an element of P(∗)hΓ, we need to check
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that for all γ, γ′ the diagram

(A.1.2)
(a, b, f) P(γ′)(a, b, f)

P(γ′γ)(a, b, f) P(γ′)(P(γ)(a, b, f))

ργ

τγ′γ P(γ)(ργ)

ηP,γ,γ′

commutes. But morphisms in P(∗)hΓ are determined by the corresponding morphisms
in P(∗), which are in turn determined by a pair consisting of a morphism in F(∗) and
a morphism in G(∗). The commutativity of the diagram (A.1.2) then follows from the
definition of ηP,γ,γ′ and P, in combination with the fact that (a, {τγ}γ∈Γ) is an object in
FhΓ(∗) and the fact that (b, {σγ}γ∈Γ) is an object of GhΓ(∗).

Step 2: Defining the functor on morphisms. A morphism

g : ((a, {τγ}γ∈Γ), (b, {σγ}γ∈Γ), f)→ ((a′, {τ ′γ}γ∈Γ), (b′, {σ′γ}γ∈Γ), f ′)

in FhΓ(∗) ×HhΓ(∗) GhΓ(∗) corresponds to a pair of morphisms (g1, g2). Concretely, we have
g1 : a→ a′ and g2 : b→ b′ such that the following diagrams commute for all γ ∈ Γ:

(A.1.3)
a a′

F(γ)(a) F(γ)(a′)

g1

τγ τ ′γ

F(g1)

b b′

G(γ)(b) G(γ)(b′)

g2

σγ σ′
γ

F(g2)

δ(a) ϵ(b)

δ(a′) ϵ(b′).

f

δ(g1) ϵ(g2)

f ′

We will define β(g) to be the morphism

(a, b, f, {ργ}γ∈Γ)→ (a′, b′, f ′, {ρ′γ}γ∈Γ)
corresponding to (g1, g2). This is a morphism in P(∗) between (a, b, f) and (a′, b′, f) by the
commutativity of the third diagram in (A.1.3). To show that this is a morphism in P(∗)hΓ,
we have to show that for all γ ∈ Γ the diagram

(A.1.4)
(a, b, f) (a′, b′, f ′)

P (γ)(a, b, f) P (γ)(a′, b′, f ′)

g

ργ ρ′γ

P(γ)(g)

commutes. But morphisms in P(∗) are determined by pairs of morphisms in F(∗) and H(∗).
The commutativity now follows from the commutativity of the first two diagrams of (A.1.3)
and the definition of P (γ) and ργ .

Step 3: Showing β is fully faithful. Suppose we are given objects

((a, {τγ}γ∈Γ), (b, {σγ}γ∈Γ), f), ((a′, {τ ′γ}γ∈Γ), (b′, {σ′γ}γ∈Γ), f ′) ∈ FhΓ(∗)×HhΓ(∗) GhΓ(∗).
We have seen in Step 2 that a morphism between these objects consists of a pair of morphisms
g1 : a → a′ and g2 : b → b′ such that the diagrams in (A.1.3) commute. There are also
conditions for the pair (g1, g2) to define a morphism between

β((a, {τγ}γ∈Γ), (b, {σγ}γ∈Γ), f)), β((a′, {τ ′γ}γ∈Γ), (b′, {σ′γ}γ∈Γ), f ′)),
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namely the commutativity of the third diagram in (A.1.3) and the commutativity of (A.1.4).
But it is immediate that the latter condition is equivalent to the commutativity of the first
two diagrams in (A.1.3), proving fully faithfulness.

Step 4: Essential surjectivity of β. Let (a, b, f, {ργ}γ∈Γ) be an object of P(∗)hΓ.
Then for each γ ∈ Γ the map ργ consists of a pair of an isomorphism τγ : a → F(γ)(a)
and an isomorphism σγ : b → G(γ)(b). It is straightforward to show that (a, b, f, {ργ}γ∈Γ)
is equal to (!!) the image under β of the triple (a, {τγ}γ∈Γ), (b, {σγ}γ∈Γ), f). □

A.2. Quotient stacks and fixed points. In this section we will study the homotopy fixed
points of quotients stacks and in particular the interaction between the formation of quotient
stacks and homotopy fixed points.

Let S be a small category with all fiber products, equipped with a Grothendieck pre-
topology. We will consider the strict (2, 1)-category Cat/S of categories fibered in groupoids
over S, see [34, Definition 02XS]. The 2-fiber product of categories fibered in groupoids as
described in [34, Lemma 0040] is the same as the one described in Definition A.1.7, thus
Lemma A.1.11 holds for categories fibered in groupoids.

Let G be a sheaf of groups on S and consider the category fibered in groupoids BG→ S:
Its objects are pairs (P, T ) where T is an object of S and where P → T is a left G-torsor.
A morphism (P, T )→ (P ′, T ′) is a pair of morphisms a : T → T ′ and b : P → P ′ such that
b is G-equivariant and such that the following diagram commutes and is Cartesian

P P ′

T T ′.

b

a

The composition of morphisms is given by concatenating Cartesian diagrams.
Recall the notation of a stack in groupoids over S, see [34, Definition 02ZI]. We observe

that the proof of [34, Lemma 04UK] can be repeated to show that BG → S is a stack in
groupoids over S.

Given a morphism f : G → G′ of sheaves of groups, there is a functor Bf : BG → BG′

sending

(T,P) 7→ (T,P ×G G′)

and on morphisms sending b : P → P ′ to the morphism b′ : P ×G G′ → P ×G G′ defined
by b′(p, g′) = (b(p), g′). Here we consider P ×G G′ as the quotient (sheaf) of P × G′ by
the right action of G given by (p, h) · g = (g−1 · p, hf(g)). We let G′ act on P × G′ by
g′ · (p, h) = (p, g′h), which clearly descends to the quotient P ×G G′ turning that quotient
into a left G′-torsor.

Lemma A.2.1. Let GrpS be the 1-category of sheaves of groups in S. There is a weak
functor

B : GrpS → Cat/S

which on objects sends G to BG and on morphisms sends f : G→ G′ to Bf : BG→ BG′.
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Proof. Part (1) of Definition A.1.1 has been specified by the lemma. For part (2) we have
to specify a 2-morphism

ηB,G : IdBG → B(IdG).

We take the one which is given on objects by the map

P → P ×G G
p 7→ (p, 1).

Moreover, given f1 : G1 → G2 and f2 : G2 → G3 we have to specify a 2-morphism

ηB,f1,f2 : B(f2 ◦ f1)→ B(f2) ◦ B(f1).

We take the one given by the isomorphism

P ×G1 G3 →
(
P ×G1 G2

)
×G2 G3

(p, g3) 7→ ((p, 1), g3).

It is straightforward, if somewhat tedious, to check that these coherence data satisfy Defi-
nition A.1.1 □

Now let X be a sheaf on S equipped with a left action of a sheaf of groups G. Then we
define a category fibered in groupoids [X/G]→ S whose objects are triples (T,P, ω), where
T is an object of S, where P → T is a G-torsor and where ω : P → X is a G-equivariant
map of sheaves. A morphism (T,P, ω) → (T ′,P ′, ω′) is a pair (a, b), where a : T → T ′ is
a morphism in S and b : P → P ′ is a G-equivariant morphism such that the following two
diagrams commute

P P ′

T T ′,

b

a

P P ′

X X,

b

ω ω′

IdX

and such that the first diagram is Cartesian. We observe that [X/G] is a stack in groupoids
over S; indeed, the proof of [34, Lemma 0370] goes through verbatim.

Note that there is a natural forgetful morphism [X/G] → BG of categories fibered in
groupoids over S which sends (T,P, ω) 7→ (T,P).

A.2.2. Let GrpShvS be the category whose objects are triples (G,X,A), where G is a sheaf
of groups on S, where X is a sheaf on S, and where A : G×X → X is a left action of G on
X. A morphism (G,X,A)→ (G′, X ′, A′) consists of a homomorphism of groups h : G→ G′

and a morphism of sheaves f : X → X ′, such that f is G-equivariant via h. There is an
obvious forgetful functor GrpShvS → GrpS sending (G,X,A) to G. We consider B as a
weak functor on GrpShvS via this forgetful functor.
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Lemma A.2.3. There is a weak functor Q : GrpShvS → Cat/S, which on objects sends
(G,X,A) to [X/G]. There is moreover a weak natural transformation Q → B, which on
objects induces the natural forgetful functor

[X/G]→ BG.

Proof. Given a morphism (h, f) : (G,X,A)→ (G′, X ′, A′) we define a morphism

Q(h, f) : [X/G]→
[
X ′/G′]

by sending (T,P, ω) 7→ (T,P ×G G′, ωh), where

ωh : P ×G G′ → X ′

(p, g′) 7→ A′(g′, f(ω(p)).

For the identity natural transformation

ηQ,(G,X,A) : IdQ(G,X,A) → Q(IdG, IdX)

we take the isomorphism (T,P, ω) 7→ (T,P ×G G,ωIdG) given by

P → P ×G G
p 7→ (p, 1),

which is compatible with ω and ωIdG since

(ωIdG)(p, 1) = A(1, IdX(ω(p)) = ω(p).

Given a pair of composable morphisms (h, f) : (G1, X1, A1) → (G2, X2, A2) and (h′, f ′) :
(G2, X2, A2)→ (G3, X3, A3), we need to specify a natural transformation

ηQ,(h,f),(h′,f ′) : Q(h′ ◦ h, f ′ ◦ f)→ Q(h′, f ′) ◦Q(h, f).

For this we take the isomorphism in [X3/G3] given by

(S,P ×G1 G3, ωh′◦h)→ (S,
(
P ×G2 G2

)
×G2 G3), (ωh)h′)

given by the isomorphism

P ×G1 G3 →
(
P ×G1 G2

)
×G2 G3

(p, g3) 7→ ((p, 1), g3)

from the proof of Lemma A.2.1. We have to check that this is an isomorphism in [X3/G3]
which comes down to the equality

ωh′h(((p, 1), g3)) = ωh′◦h(p, g3).

To check this we compute that

(ωh)h′ (((p, 1), g3)) = A′(g3, f
′(ωh(p, 1)))

= A3(g3, f
′(A2(1, f(p))))

= A3(g3, f
′(f(p)))

= ωh′◦h(p, g3).
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As in the proof of Lemma A.2.1, we omit the verification that these coherence data satisfy
Definition A.1.1.

The weak natural transformation Q → B is easy to specify because it follows by construc-
tion that for (h, f) : (G,X,A)→ (G′, X ′, A′) the diagram

[X/G] [X ′/G′]

BG BG′

Q(h,f)

B(h)

is strictly commutative. Thus we can specify the identity natural transformation in (2) of
Definition A.1.2, which clearly satisfies the properties outlined in that definition. □

We will now spell out a particular case of Lemma A.2.3: Let Γ be an abstract group, let
(G,X,A) ∈ GrpShvS and let Γ → IsomGrpShvS ((G,X,A), (G,X,A)) be a group homomor-
phism. This gives us a functor

BΓ→ GrpShvS ,

which we can compose with the weak functor of Lemma A.2.3 to get a Γ-object in categories
fibered in groupoids over S, see Example A.1.5. Concretely, the group homomorphism

Γ→ IsomGrpShvS ((G,X,A), (G,X,A))

comes down to the following data: We have a left action of Γ on G over S; let us write
αγ : G→ G for the induced isomorphism of groups for each γ ∈ Γ. We have a left action of
Γ on X, which we denote by βγ : X → X for each γ ∈ Γ. These morphisms are subject to
the following commutative diagram for all γ ∈ Γ

G×X X

G×X X.

A

αγ×βγ βγ

A

The induced action of Γ on [X/G] on objects takes a tuple (T,P, ω) and sends it to the
tuple (T,P ×G,γ G,ωγ). Concretely, we have that

ωγ(p, g) = A(g, βγ(ω(p)))

which means that ωγ(p, 1) = βγ(ω(p)).

A.2.4. By Lemma A.2.3 there is a Γ-equivariant morphism

[X/G]→ BG

and thus by Lemma A.1.9 there is a functor

[X/G]hΓ → (BG)hΓ.

Here (BG)hΓ is the Γ-homotopy fixed points of (BG) in the sense of definition A.1.8, which
is a category fibered in groupoids over S.
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Lemma A.2.5. The category fibered in groupoids (BG)hΓ is a stack in groupoids over S.

Proof. Descent for morphisms in (BG)hΓ follows directly from descent of morphisms in BG
since the forgetful map (BG)hΓ → BG is faithful by construction. Descent for objects in
(BG)hΓ follows from descent for objects in BG in combination with descent for morphisms
in BG, and the weak functoriality of the Γ action. □

A.2.6. Now let GΓ be the fixed point sheaf of G and let XΓ be the fixed point sheaf of X.
Then there is a natural morphism

BGΓ → (BG)hΓ

of categories fibered in groupoids over S which sends (T,P) to (T,P ×GΓ
G) equipped with

the isomorphisms

τγ,0 :
(
P ×GΓ

G
)
→

(
P ×GΓ

G
)
×G,γ G

(p, g) 7→ ((p, 1), αγ(g)),

and which sends a morphism

P P ′

T T ′.

b

a

to the induced diagram

P ×GΓ
G P ′ ×GΓ

G

T T ′,

bG

a

where bG(p, g) = (b(p), g), which is well defined by the GΓ-equivariance of b. Similarly there
is a natural morphism [

XΓ/GΓ
]
→ [X/G]hΓ

of categories fibered in groupoids over S which sends (T,P, ω) to (T,P×GΓ
G, {τγ,0}γ∈Γ, ωG),

where

ωG : P ×GΓ
G→ X

is defined by ωG(p, g) = A(g, ω(p)). By construction, we see that the following diagram of
categories fibered in groupoids over S is strictly commutative

(A.2.1)

[
XΓ/GΓ

]
[X/G]hΓ

(BGΓ) (BG)hΓ.
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Proposition A.2.7. The diagram in equation (A.2.1) is 2-Cartesian.

We start by proving a lemma.

Lemma A.2.8. The natural map BGΓ → (BG)hΓ is fully faithful.

Proof. Since this is a morphism of categories fibered in groupoids over S, it suffices to prove
that the map on fibers is fully faithful. Let T ∈ S, let P,P ′ be GΓ-torsors over T and let
f : (T,P ×GΓ

G, {τγ,0}γ∈Γ)→ (T,P ′ ×GΓ
G, {τ ′γ,0}γ∈Γ) be an isomorphism in (BG)hΓ (T ).

We need to show that f is induced from a unique isomorphism P → P ′. If we can show
that f2(p, g) = g, then f is induced from a unique isomorphism P → P ′; namely, the unique
GΓ-equivariant morphism sending p to f1(p, 1). It follows from the definitions of morphisms
in (BG)hΓ that for γ ∈ Γ the following diagram must commute(

P ×GΓ
G
) (

P ×GΓ
G
)
×G,γ G

(
P ′ ×GΓ

G
) (

P ′ ×GΓ
G
)
×G,γ G.

τγ,0

f (f,1)

τ ′γ,0

Using the definition τγ,0(p, g) = (p, 1, γ(g)) this gives us the equality

((f1(p, g), 1), γ(f2(p, g)) = ((f1(p, g), 1), γ(g)).

Thus we see that f2(p, g) = g and thus f is induced from the unique GΓ-equivariant map
P → P ′ sending p 7→ f2(p, 1). □

Proof of Proposition A.2.7. Both the top horizontal map and the bottom horizontal map
are fully faithfull, this follows from the definition and Lemma A.2.8. The proposition then
comes down to the following claim: Given an object (T,P, {τγ}γ∈Γ, ω) of [X/G]hΓ such
that there is a GΓ-torsor Q → T and a GΓ-equivariant morphism f : Q → P inducing an
isomorphism

P ×GΓ
G→ Q

under which {τγ}γ∈Γ corresponds to {τγ,0}γ∈Γ, the composition of f with ω factors through
XΓ. Let us write ω′ for the map Q×GΓ

G→ X induced by f . In this situation the diagrams

Q×GΓ
G

(
Q×GΓ

G
)
×G,γ G

X X

ω′

τγ ,0

ω′
γ

IdX

commute for all γ ∈ Γ, which means that for q ∈ Q we have

ω′(q, 1) = ω′
γ((q, 1), 1) = βγ(ω

′(q, 1))

for all γ ∈ Γ. We deduce that ω′ maps Q ⊂ Q×GΓ
G to XΓ, which concludes the proof. □
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A.2.9. We now study under what conditions the map BGΓ → (BG)hΓ is an equivalence. For
this purpose, we introduce cocycles and cohomology groups. Consider the sheaf Z1(Γ, G)
whose T -points are given by the set of cocycles Z1(Γ, G(T )) with values in G(T ). In other
words, these are the functions σ : Γ→ G(T ) satisfying

σ(γ · γ′) = σ(γ) · αγ(σ(γ′)).

There is an action of G on Z1(Γ, G), which takes an element g ∈ G(T ) and a cocycle
σ ∈ Z1(Γ, G(T )) and sends it to the cocycle

σ′(γ) = g · σ(γ) · αγ(g−1).

The quotient set for this action is per definition the first (nonabelian) cohomology group of
Γ with coefficients in G(T ), in formulas,

Z1(Γ, G(T ))/G(T ) = H1(Γ, G(T )).

Given a cocycle σ : Γ→ G(T ) and γ ∈ Γ we get an isomorphism of trivial GT -torsors

ϵγ,σ : GT → GT ×G,γ G
g 7→ (αγ−1(g), σ(γ)).

To check that (T,GT , {ϵγ,σ}γ∈Γ)) defines an object of (BG)hΓ we need to check that the
following diagram commutes

GT GT ×G,γ2 G

GT ×G,γ2γ1 G
(
GT ×G,γ1 G

)
×G,γ2 G.

ϵγ2γ1,σ

ϵγ2

B(γ2)(ϵγ1,σ)
ηB,γ1,γ2

This comes down to the equality

(αγ−1
2 γ1

(g), σ(γ1γ2)), 1) = ((αγ−1
2
αγ−1

1
(g), σ(γ1)), σ(γ1))

which follows from the cocycle condition

σ(γ · γ′) = σ(γ) · αγ(σ(γ′)).

If we now consider Z1(Γ, G) as a fibered category over S, the construction above defines a
natural map Z1(Γ, G)→ (BG)hΓ which takes (T, σ ∈ Z1(Γ, G(T )) to (T,GT , {ϵγ,σ}γ∈Γ).

Lemma A.2.10. This map induces an isomorphism[
Z1(Γ, G)/G

]
→ (BG)hΓ.

Proof. This comes down to showing that the sheaf Z1(Γ, G) represents the functor on S
sending T to the set of Γ-equivariant structures on the trivial G-torsor over T . We have
seen above how to go from a cocycle σ ∈ Z1(Γ, G)(T ) to a Γ-equivariant structure on the
trivial G-torsor over T . Conversely, let (P0 ×GΓ

G, {τγ}γ∈Γ), be a Γ-equivariant structure
on the trivial G-torsor P0 ×GΓ

G where P0 is the trivial GΓ-torsor. Then we get a cocycle
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by considering the collection of elements σ(γ) ∈ G(T ) defined to be the element of G(T )
corresponding to the following automorphism of P0 ×GΓ

G over T

P0 ×GΓ
G

(
P0 ×GΓ

G
)
×G,γ G P0 ×GΓ

G.
τγ τ−1

γ,0

Here τγ,0 is the isomorphism

τγ,0 :
(
P0 ×GΓ

G
)
→

(
P0 ×GΓ

G
)
×G,γ G

(p, g) 7→ ((p, 1), γ(g))

from the beginning of Section A.2.6. It is a straightforward yet laborious check that this
defines an inverse to the construction above, and the lemma is proved. □

We let H1(Γ, G) be the sheafification of the presheaf T 7→ H1(Γ, G(T )) on S. It follows
from Lemma A.2.10 that there is a natural map (BG)hΓ → H1(Γ, G). This fits in a 2-
commutative diagram

(A.2.2)
BGΓ (BG)hΓ

S H1(Γ, G),

where the top horizontal map is the natural map, and the bottom horizontal map is the
natural inclusion of the cohomology class of the trivial cocycle. We have the following
fundamental result.

Proposition A.2.11. The diagram in (A.2.2) is 2-Cartesian.

Proof. The top horizontal arrow is fully faithful by Lemma A.2.8. It suffices to show that
its essential image consists of those elements of (BG)Γ whose image in H1(Γ, G) is trivial.
This can be checked locally in the Grothendieck topology on S since both source and target
are stacks in groupoids over S, see Lemma A.2.5.

Given an object of (BG)hΓ over an object T of S whose image in H1(Γ, G) is trivial,
we replace T by a cover to assume that the underlying G-torsor is trivial. Then the Γ-
equivariant structure corresponds to a cocycle σ : Γ → G(T ), and by assumption we may
pass to a further cover of T to assume that this cocycle is trivial. We now observe that
the cocycle being trivial tells us precisely that the Γ-equivariant structure on the trivial
G-torsor over T is isomorphic to the trivial Γ-equivariant structure on the trivial G-torsor.
In other words, that the corresponding object of (BG)hΓ(T ) is in the essential image of
(BGhΓ)(T ). □

Putting together Proposition A.2.11 and Proposition A.2.7 we obtain the following corol-
laries.
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Corollary A.2.12. There is a natural 2-Cartesian diagram[
XΓ/GΓ

]
[X/G]Γ

S H1(Γ, G).

Corollary A.2.13. If H1(Γ, G) is trivial, then the natural map[
XΓ/GΓ

]
→ [X/G]hΓ

is an equivalence.
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